We report on the first successful immobilization of a DNA aptamer, in particular, a fluorescence-signaling DNA aptamer, within a sol-gel-derived matrix. The specific aptamer examined in this study undergoes a structural switch in the presence of adenosine triphosphate (ATP) to release a dabcyl-labeled nucleotide strand (QDNA), which in turn relieves the quenching of a fluorescein label that is also present in the aptamer structure. It was demonstrated that aptamers containing a complementary QDNA strand along with either a short complimentary strand bearing fluorescein (tripartite structure) or a directly bound fluorescein moiety (bipartite structure) remained intact upon entrapment within biocompatible sol-gel derived materials and retained binding activity, structure-switching capabilities, and fluorescence signal generation that was selective and sensitive to ATP concentration. Studies were undertaken to evaluate the properties of the immobilized aptamers that were either in their native state or bound to streptavidin using a terminal biotin group on the aptamer, including response time, accessibility, and leaching. Furthermore, signaling abilities were optimized through evaluation of different QDNA constructs. These studies indicated that the aptamers remained in a state that was similar to solution, with moderate leaching, only minor decreases in accessibility to ATP, and an expected reduction in response time due to diffusional barriers to mass transport of the analyte through the silica matrix. Entrapment of the aptamer also resulted in protection of the DNA against degradation from nucleases, improving the potential for use of the aptamer for in vivo sensing. This work demonstrates that sol-gel-derived materials can be used to successfully immobilize and protect DNA-based biorecognition elements and, in particular, DNA aptamers, opening new possibilities for the development of DNA aptamer-based devices, such as affinity columns, microarrays, and fiber-optic sensors.
Recent years have seen a dramatic increase in the use of fluorescence-signaling DNA aptamers and deoxyribozymes as novel biosensing moieties. Many of these functional single-stranded DNA molecules are either engineered to function in the presence of divalent metal ion cofactors or designed as sensors for specific divalent metal ions. However, many divalent metal ions are potent fluorescence quenchers. In this study, we first set out to examine the factors that contribute to quenching of DNA-bound fluorophores by commonly used divalent metal ions, with the goal of establishing general principles that can guide future exploitation of fluorescence-signaling DNA aptamers and deoxyribozymes as biosensing probes. We then extended these studies to examine the effect of specific metals on the signaling performance of both a structure-switching signaling DNA aptamer and an RNA-cleaving and fluorescence-signaling deoxyribozyme. These studies showed extensive quenching was obtained when using divalent transition metal ions owing to direct DNA-metal ion interactions, leading to combined static and dynamic quenching. The extent of quenching was dependent on the type of metal ion and the concentration of supporting monovalent cations in the buffer, with quenching increasing with the number of unpaired electrons in the metal ion and decreasing with the concentration of monovalent ions. The extent of quenching was independent of the fluorophore, indicating that quenching cannot be alleviated simply by changing the nature of the fluorescent probe. Our results also show that the DNA sequence and the local secondary structure in the region of the fluorescent tag can dramatically influence the degree of quenching by divalent transition metal ions. In particular, the extent of quenching is predominantly determined by the fluorophore location with respect to guanine-rich and duplex regions within the strand sequence. Examination of the effect of both the type and concentration of metal ions on the performance of a fluorescence-signaling aptamer and a signaling deoxyribozyme confirms that judicious choice of divalent transition metal ions is important in maximizing signals obtained from such systems.
Three fluorescence signaling DNA enzymes (deoxyribozymes or DNAzymes) were successfully immobilized within a series of sol-gel-derived matrixes and used for sensing of various metal ions. The DNAzymes are designed such that binding of appropriate metal ions induces the formation of a catalytic site that cleaves a ribonucleotide linkage within a DNA substrate. A fluorophore (fluorescein) and a quencher (DABCYL, [4-(4-dimethylaminophenylazo)benzoic acid]) were placed on the two deoxythymidines flanking the ribonucleotide to allow the generation of fluorescence upon the catalytic cleavage at the RNA linkage. In general, all DNAzymes retained at least partial catalytic function when entrapped in either hydrophilic or hydrophobic silica-based materials, but displayed slower response times and lower overall signal changes relative to solution. Interestingly, it was determined that maximum sensitivity toward metal ions was obtained when DNAzymes were entrapped into composite materials containing approximately 40% of methyltrimethoxysilane (MTMS) and approximately 60% tetramethoxysilane (TMOS). Highly polar materials derived from sodium silicate, diglycerylsilane, or TMOS had relatively low signal enhancements, while materials with very high levels of MTMS showed significant leaching and low signal enhancements. Entrapment into the hybrid silica material also reduced signal interferences that were related to metal-induced quenching; such interferences were a significant problem for solution-based assays and for polar materials. Extension of the solid-phase DNAzyme assay toward a multiplexed assay format for metal detection is demonstrated, and shows that sol-gel technology can provide new opportunities for the development of DNAzyme-based biosensors.
We report on the development and optimization of a sol-gel-based method for the preparation of protein microarrays that has the potential to allow pin-spotting of active proteins for high throughput multianalyte biosensing and screening of protein-small molecule interactions. Microarrays were printed onto bare and chemically modified surfaces using the commercially available sol-gel precursors tetraethyl orthosilicate and sodium silicate and the newly developed biocompatible sol-gel precursors monosorbitol silane and diglyceryl silane. Parameters such as the type and level of the buffer, the water-to-silane ratio, and the solution pH were also varied to assess the factors that controlled the production of optimal microarrays. Such factors included the ability to pin-print without clogging of the pins, the adhesion of the sol-gel spot to the substrate, the dimensions of the microspot, and the stability of both the microspot and the entrapped protein. The microarraying of active antibodies was successfully demonstrated using an optimized combination of parameters, and such arrays were shown to have significantly higher signal-to-background levels than conventional arrays formed by covalent immobilization of antibodies on chemically derivatized surfaces.
Layered enzyme assays: The use of a layered sol‐gel based material allows for spatial separation of coimmobilized enzyme and fluorescent aptamer reporter species. This provides a route for facile assaying of enzyme activity and inhibition in cases where the aptamer signals the presence of the enzyme substrate. This then results in accurate IC50 determinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.