We define posets of types B, C, and D. These posets encode the matrix forms of certain Lie algebras which lie between the algebras of upper-triangular and diagonal matrices. Our primary concern is the index and spectral theories of such type-B, C, and D Lie poset algebras. For an important restricted class, we develop combinatorial index formulas and, in particular, characterize posets corresponding to Frobenius Lie algebras. In this latter case we show that the spectrum is binary; that is, consists of an equal number of 0's and 1's. Interestingly, type-B, C, and D Lie poset algebras can be related to Reiner's notion of a parset.
We provide a combinatorial recipe for constructing all posets of height at most two for which the corresponding type-A Lie poset algebra is contact. In the case that such posets are connected, a discrete Morse theory argument establishes that the posets' simplicial realizations are contractible. It follows from a cohomological result of Coll and Gerstenhaber on Lie semi-direct products that the corresponding contact Lie algebras are absolutely rigid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.