IntroductionA challenge in the engineering of auto-adjusting prosthetic sockets is to maintain stable operation of the control system while users change their bodily position and activity. The purpose of this study was to test the stability of a socket that automatically adjusted socket size to maintain fit. Socket release during sitting was conducted between bouts of walking.MethodsAdjustable sockets with sensors that monitored distance between the liner and socket were fabricated. Motor-driven panels and a microprocessor-based control system adjusted socket size during walking to maintain a target sensed distance. Limb fluid volume was recorded continuously. During eight sit/walk cycles, the socket panels were released upon sitting and then returned to position for walking, either the size at the end of the prior bout or a size 1.0% larger in volume.ResultsIn six transtibial prosthesis users, the control system maintained stable operation and did not saturate (move to and remain at the end of the actuator’s range) during 98% of the walking bouts. Limb fluid volume changes generally matched the panel position changes executed by the control system.ConclusionsStable operation of the control system suggests that the auto-adjusting socket is ready for testing in users’ at-home settings.
A suction or elevated vacuum prosthetic socket that loses vacuum pressure may cause excessive limb motion, putting the user at risk of skin irritation, gait instability and injury. The purpose of this research was to develop a method to monitor distal limb motion and then test a small group of participants wearing suction sockets to identify variables that strongly influenced motion. A thin plastic insert holding two inductive sensor antennae was designed and printed. Inserts were placed in suction sockets made for four participants who regularly used suction or elevated vacuum suspension. Participants wore a liner with a trace amount of iron powder in the elastomer that served as a distance target for the sensors. In-lab testing demonstrated that the sensed distance increased when participants added socks and decreased when they removed socks, demonstrating proper sensor performance. Results from take-home testing (3–5 days) suggest that research investigation into cyclic limb motion for sock presence v. absence should be pursued, as should the influence of bodily position between bouts of walking. These variables may have an important influence on suspension. Long-term monitoring may provide clinical insight to improve fit and to enhance suction and elevated vacuum technology.
Introduction The purpose of this study was to test a novel activity monitor that tracks the time a prosthesis is worn, and the nature of the ambulatory activity conducted with the prosthesis. These capabilities allow prosthesis users’ wear and accommodation practices (e.g., temporary doffing) to be monitored, and the intensity of their activities to be assessed. Methods A portable limb-socket motion sensing system was used to monitor doffs, walk bouts (≥5 steps), low locomotion (2–4 steps), stationary positions, and weight shifts in a group of transtibial prosthesis users. The relationship between doff time and active motion time was investigated, and durations of low and high intensity active motions were compared. Results For the 14 participants tested, the median prosthesis day duration ranged from 12.8–18.8 h. Eleven participants typically doffed five or fewer times per day, and three participants typically doffed 10 or more times per day. Nine participants demonstrated a positive correlation between daily doff duration and active motion duration. Six participants spent more time in weight shifts than walk bouts, while eight participants spent more time in walk bouts than weight shifts. Conclusion Capturing don time and temporary doffs and distinguishing weight shifts from walks may provide insight relevant to patient care. Longer-term monitoring studies should be conducted, and the clinical utility of the data evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.