Herein we describe the molecular Co(4)O(4) cubane complex Co(4)O(4)(OAc)(4)(py)(4) (1), which catalyzes efficient water oxidizing activity when powered by a standard photochemical oxidation source or electrochemical oxidation. The pH dependence of catalysis, the turnover frequency, and in situ monitoring of catalytic species have revealed the intrinsic capabilities of this core type. The catalytic activity of complex 1 and analogous Mn(4)O(4) cubane complexes is attributed to the cubical core topology, which is analogous to that of nature's water oxidation catalyst, a cubical CaMn(4)O(5) cluster.
Water-splitting dye-sensitized photoelectrochemical (WS-DSPECs) cells employ molecular sensitizers to absorb light and transport holes across the TiO2 surface to colloidal or molecular water oxidation catalysts. As hole diffusion occurs along the surface, electrons are transported through the mesoporous TiO2 film. In this paper we report the effects of electron trapping and protonation in the TiO2 film on the dynamics of electron and hole transport in WS-DSPECs. When the sensitizer bis(2,2'-bipyridine)(4,4'-diphosphonato-2,2'-bipyridine)ruthenium(II) is adsorbed from aqueous acid instead of from ethanol, there is more rapid hole transfer between photo-oxidized sensitizer molecules that are adsorbed from strong acid. However, the photocurrent and open-circuit photovoltage are dramatically lower with sensitizers adsorbed from acid because intercalated protons charge-compensate electron traps in the TiO2 film. Kinetic modeling of the photocurrent shows that electron trapping is responsible for the rapid electrode polarization that is observed in all WS-DSPECs. Electrochemical impedance spectroscopy suggests that proton intercalation also plays an important role in the slow degradation of WS-DSPECs, which generate protons at the anode as water is oxidized to oxygen.
Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO2 solar cell. We report the synthesis, spectral, and electrochemical properties of the sensitizers. Despite slow recombination of photoinjected electrons with oxidized porphyrins, photocurrents are low because of low injection yields and slow electron self-exchange between oxidized porphyrins. The free-base porphyrins are stable under conditions of water photoelectrolysis and in some cases photovoltages in excess of 1 V are observed.
Efficient conversion
of solar energy into useful chemical fuels is a major scientific challenge.
Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs)
utilize mesoporous oxide supports sensitized with molecular dyes and
catalysts to drive the water-splitting reaction. Despite a growing
body of work, the overall efficiencies of WS-DSPECs remain low, in
large part because of poor electron injection into the conduction
band of the oxide support. In this study, we characterize the ultrafast
injection dynamics of several proposed oxide supports (TiO2, TiO2/Al2O3, SnO2, SnO2/TiO2) under identical conditions using time-resolved
terahertz spectroscopy. In the absence of an Al2O3 overlayer, we observe a two-step injection from the dye singlet
state into nonmobile surface traps, which then relax into the oxide
conduction band. We also find that, in SnO2-core/TiO2-shell configurations, electron injection into TiO2 trap states occurs rapidly, followed by trapped electrons being
released into SnO2 on the hundreds of picoseconds time
scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.