Background: The 12-lead ECG is considered the gold standard to differentiate between selective (S), nonselective (NS) His bundle pacing (HBP), and right ventricular septal capture in routine clinical practice. We sought to assess the utility of device EGM recordings as a tool to identify the type of HBP morphology. Methods: One hundred forty-eight consecutive patients underwent HBP with a 3830 Select Secure lead (Medtronic, Inc) at 3 centers between October 2016 and October 2017. The near field V-EGM morphology (NF EGM), near field V-EGM time to peak (NF Time to peak ), and far-field EGM QRS duration (QRSd) were recorded while pacing the His lead with simultaneous 12-lead ECG rhythm strips. Results: Indications for HBP were sinus node dysfunction, atrioventricular conduction disease, and cardiac resynchronization therapy in 68 (46%), 56 (38%), and 24 (16%) patients, respectively. Baseline QRSd was 108±38 ms with QRSd >120 ms in 57 (39%) patients (27 right bundle branch block, 18 left bundle branch block, and 12 intraventricular conduction delay). S-HBP was noted in 54 (36%) patients. A positive NF EGM and NF Time to peak >40 ms were highly sensitive (94% and 93%, respectively) and specific (90% and 94%) for S-HBP irrespective of baseline QRSd. All 3 parameters (+NF EGM , NF Time to peak >40 ms, and far-field EGM QRSd <120 ms) had high negative predictive value (97%, 95%, and 92%). A novel device-based algorithm for S-HBP was proposed. EGM transitions correlated with ECG transitions during threshold testing and can help accurately differentiate between S-HBP, NS-HBP, and right ventricular septal pacing with a cumulative positive predictive value of 91% (positive predictive value =100% in patients with baseline QRSd <120 ms). Conclusions: We propose a novel and simple criteria for accurate differentiation between S-HBP, NS-HBP, and right ventricular septal capture morphologies by careful analysis of device EGMs alone. This study paves the way for future studies to assess autocapture algorithms for devices with HBP.
Introduction Although balloon‐based techniques, such as the laser balloon (LB) ablation have simplified pulmonary vein isolation (PVI), procedural fluoroscopy usage remains higher in comparison to radiofrequency PVI approaches due to limited 3‐dimensional mapping system integration. Methods In this prospective study, 50 consecutive patients were randomly assigned in alternating fashion to a low fluoroscopy group (LFG; n = 25) or conventional fluoroscopy group (CFG; n = 25) and underwent de novo PVI procedures using visually guided LB technique. Results There was no statistical difference in baseline characteristics or cross‐overs between treatment groups. Acute PVI was accomplished in all patients. Mean follow up was 318 ± 69 days. Clinical recurrence of atrial fibrillation after PVI was similar between groups (CFG: 19% vs LFG: 15%; P = .72). Total fluoroscopy time was significantly lower in the LFG than the CFG (1.7 ± 1.4 vs 16.9 ± 5.9 minutes; P < .001) despite similar total procedure duration (143 ± 22 vs 148 ± 22 minutes; P = .42) and mean LA dwell time (63 ± 15 vs 59 ± 10 minutes; P = .28). Mean dose area product was significantly lower in the LFG (181 ± 125 vs 1980 ± 750 μGym2; P < .001). Fluoroscopy usage after transseptal access was substantially lower in the LFG (0.63 ± 0.43 vs 11.70 ± 4.32 minutes; P < .001). Complications rates were similar between both groups (4% vs 2%; P = .57). Conclusions This study demonstrates that LB PVI can be safely achieved using a novel low fluoroscopy protocol while also substantially reducing fluoroscopy usage and radiation exposure in comparison to conventional approaches for LB ablation.
Aims To examine the feasibility and safety of a novel protocol for low fluoroscopy, electroanatomic mapping (EAM)-guided Cardiac resynchronization therapy with a defibrillator (CRT-D) implantation and using both EnSite NavX (St. Jude Medical, St. Paul, MN, USA) and Carto 3 (Biosense Webster, Irvine, CA, USA) mapping systems. Methods and results Twenty consecutive patients underwent CRT implantation using either a conventional fluoroscopic approach (CFA) or EAM-guided lead placement with Carto 3 and EnSite NavX mapping systems. We compared fluoroscopy and procedural times, radiopaque contrast dose, change in QRS duration pre- and post-procedure, and complications in all patients. Fluoroscopy time was 86% lower in the EAM group compared to the conventional group [mean 37.2 min (CFA) vs. 5.5 min (EAM), P = 0.00003]. There was no significant difference in total procedural time [mean 183 min (CFA) vs. 161 min (EAM), P = 0.33] but radiopaque contrast usage was lower in the EAM group [mean 16 mL (CFA) vs. 4 mL (EAM), P = 0.006]. Likewise, there was no significant change in QRS duration with BiV pacing between the groups [mean −13 (CFA) vs. −25 ms (EAM), P = 0.09]. Conclusion Electroanatomic mapping-guided lead placement using either Carto or ESI NavX mapping systems is a feasible alternative to conventional fluoroscopic methods for CRT-D implantation utilizing the protocol described in this study.
Fluoroscopy remains a cornerstone imaging modality for catheter placement and positioning in electrophysiology device and ablation procedures. However, efforts are being made to reduce the cumulative exposure to radiation in the patient and physician alike. We present the case of a 59-year-old male patient with hypertension, chronic kidney disease, and paroxysmal atrial fibrillation who underwent successful near-fluoroless laser balloon (LB) pulmonary vein isolation (PVI) ablation. Though this case demonstrates the usage of a novel protocol for nearfluoroless LB ablation that resulted in successful, uncomplicated acute PVI, the feasibility and safety of this technique should be validated in a larger series or prospective comparative study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.