HipSpec is a system for automatically deriving and proving properties about functional programs. It uses a novel approach, combining theory exploration, counterexample testing and inductive theorem proving. HipSpec automatically generates a set of equational theorems about the available recursive functions of a program. These equational properties make up an algebraic specification for the program and can in addition be used as a background theory for proving additional user-stated properties. Experimental results are encouraging: HipSpec compares favourably to other inductive theorem provers and theory exploration systems.
Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.
Abstract. We present QuickSpec, a tool that automatically generates algebraic specifications for sets of pure functions. The tool is based on testing, rather than static analysis or theorem proving. The main challenge QuickSpec faces is to keep the number of generated equations to a minimum while maintaining completeness. We demonstrate how QuickSpec can improve one's understanding of a program module by exploring the laws that are generated using two case studies: a heap library for Haskell and a fixed-point arithmetic library for Erlang.
Abstract. This paper describes Hipster, a system integrating theory exploration with the proof assistant Isabelle/HOL. Theory exploration is a technique for automatically discovering new interesting lemmas in a given theory development. Hipster can be used in two main modes. The first is exploratory mode, used for automatically generating basic lemmas about a given set of datatypes and functions in a new theory development. The second is proof mode, used in a particular proof attempt, trying to discover the missing lemmas which would allow the current goal to be proved. Hipster's proof mode complements and boosts existing proof automation techniques that rely on automatically selecting existing lemmas, by inventing new lemmas that need induction to be proved. We show example uses of both modes.
Abstract. This paper describes our collection of benchmarks for inductive theorem provers. The recent spur of interest in automated inductive theorem proving has increased the demands for evaluation and comparison between systems. We expect the benchmark suite to continually grow as more problems are submitted by the community. New challenge problems will promote further development of provers which will greatly benefit both developers and users of inductive theorem provers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.