SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/.
There is an urgent need for new drugs against tuberculosis which annually claims 1.7-1.8 million lives. One approach to identify potential leads is to screen in vitro small molecules against Mycobacterium tuberculosis (Mtb). Until recently there was no central repository to collect information on compounds screened. Consequently, it has been difficult to analyze molecular properties of compounds that inhibit the growth of Mtb in vitro. We have collected data from publically available sources on over 300 000 small molecules deposited in the Collaborative Drug Discovery TB Database. A cheminformatics analysis on these compounds indicates that inhibitors of the growth of Mtb have statistically higher mean logP, rule of 5 alerts, while also having lower HBD count, atom count and lower PSA (ChemAxon descriptors), compared to compounds that are classed as inactive. Additionally, Bayesian models for selecting Mtb active compounds were evaluated with over 100 000 compounds and, they demonstrated 10 fold enrichment over random for the top ranked 600 compounds. This represents a promising approach for finding compounds active against Mtb in whole cells screened under the same in vitro conditions. Various sets of Mtb hit molecules were also examined by various filtering rules used widely in the pharmaceutical industry to identify compounds with potentially reactive moieties. We found differences between the number of compounds flagged by these rules in Mtb datasets, malaria hits, FDA approved drugs and antibiotics. Combining these approaches may enable selection of compounds with increased probability of inhibition of whole cell Mtb activity.
Researchers, hindered by a lack of standard gene and protein-naming conventions, endure long, sometimes fruitless, literature searches. A system that is able to automatically assign gene names to their LocusLink ID (LLID) in previously unseen MEDLINE abstracts is described. The system is based on supervised learning and builds a model for each LLID. The training sets for all LLIDs are extracted automatically from MEDLINE references in the LocusLink and SwissProt databases. A validation was done of the performance for all 20,546 human genes with LLIDs. Of these, 7344 produced good quality models (F-measure >0.7, nearly 60% of which were >0.9) and 13,202 did not, mainly due to insufficient numbers of known document references. A hand validation of MEDLINE documents for a set of 66 genes agreed well with the system's internal accuracy assessment. It is concluded that it is possible to achieve high quality gene disambiguation using scaleable automated techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.