HighlY constrained backPRojection (HYPR) is a promising image-processing strategy with widespread application in time-resolved MRI that is also well suited for PET applications requiring time series data. The HYPR technique involves the creation of a composite image from the entire time series. The individual time frames then provide the basis for weighting matrices of the composite. The signal-to-noise ratio (SNR) of the individual time frames can be dramatically improved using the high SNR of the composite image. In this study, we introduced the modified HYPR algorithm (the HYPR method constraining the backprojections to local regions of interest [HYPR-LR]) for the processing of dynamic PET studies. We demonstrated the performance of HYPR-LR in phantom, small-animal, and human studies using qualitative, semiquantitative, and quantitative comparisons. The results demonstrate that significant improvements in SNR can be realized in the PET time series, particularly for voxel-based analysis, without sacrificing spatial resolution. HYPR-LR processing holds great potential in nuclear medicine imaging for all applications with low SNR in dynamic scans, including for the generation of voxel-based parametric images and visualization of rapid radiotracer uptake and distribution.
18F-Fallypride and 11C-FLB457 are commonly used PET radioligands for imaging extrastriatal dopamine D2/D3 receptors, but differences in their in vivo kinetics may affect the sensitivity for measuring subtle changes in receptor binding. Focusing on regions of low binding, a direct comparison of the kinetics of 18F-fallypride and 11C-FLB457 was made using a MI protocol. Injection protocols were designed to estimate K1, k2, fND kon, Bmax, and koff in the midbrain and cortical regions of the rhesus monkey. 11C-FLB457 cleared from the arterial plasma faster and yielded a ND space distribution volume ( K1/ k2) that is three times higher than 18F-fallypride, primarily due to a slower k2 (FAL:FLB; k2=0.54 min−1:0.18 min−1). The dissociation rate constant, koff, was slower for 11C-FLB457, resulting in a lower KDapp than 18F-fallypride (FAL:FLB; 0.39 nM:0.13 nM). Specific D2/D3 binding could be detected in the cerebellum for 11C-FLB457 but not 18F-fallypride. Both radioligands can be used to image extrastriatal D2/D3 receptors, with 11C-FLB457 providing greater sensitivity to subtle changes in low-receptor-density cortical regions and 18F-fallypride being more sensitive to endogenous dopamine displacement in medium-to-high-receptor-density regions. In the presence of specific D2/D3 binding in the cerebellum, reference region analysis methods will give a greater bias in BPND with 11C-FLB457 than with 18F-fallypride.
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
PET imaging of the neuroreceptor systems in the brain has earned a prominent role in studying normal development, neuropsychiatric illness and developing targeted drugs. The dopaminergic system is of particular interest due to its role in the development of cognitive function and mood as well as its suspected involvement in neuropsychiatric illness. Nonhuman primate animal models provide a valuable resource for relating neurochemical changes to behavior. To facilitate comparison within and between primate models, we report in vivo D2/D3 binding in a large cohort of adolescent rhesus monkeys.Methods-In this work, the in vivo D2/D3 dopamine receptor availability was measured in a cohort of 33 rhesus monkeys in the adolescent stage of development (3.2 -5.3 years). Both striatal and extrastriatal D2/D3 binding were measured using [F-18]fallypride with a high resolution small animal PET scanner. The distribution volume ratio (DVR) was measured for all subjects and group comparisons of D2/D3 binding among the cohort were made based on age and sex. Because two sequential studies were acquired from a single [F-18]fallypride batch, the effect of competing (unlabeled) ligand mass was also investigated.Results-Among this cohort, the rank order of regional D2/D3 receptor binding did not vary from previous studies with adult rhesus monkeys, with: putamen > caudate > ventral striatum > amygdalã substantia nigra > medial dorsal thalamus > lateral temporal cortex ~ frontal cortex. The DVR coefficient of variation ranged from 14% -26%, with the greatest variance seen in the head of the caudate. There were significant sex differences in [F-18]fallypride kinetics in the pituitary gland, but this was not observed for regions within the blood-brain barrier. Furthermore, no regions in the brain showed significant sex or age related differences in DVR within this small age range. Based on a wide range of injected fallypride mass across the cohort, significant competition effects could only be detected in the substantia nigra, thalamus, and frontal cortex, and were not evident above intersubject variability in all other regions.Conclusion-These data represent the first report of large cohort in vivo D2/D3 dopamine whole brain binding in the adolescent brain and will serve as a valuable comparison for understanding dopamine changes during this critical time of development and provide a framework for creating a dopaminergic biochemical atlas for the rhesus monkey.
The length polymorphism of the serotonin (5-HT) transporter gene promoter region has been implicated in altered 5-HT function and, in turn, neuropsychiatric illnesses, such as anxiety and depression. The nonhuman primate has been used as a model to study anxiety-related mechanisms in humans based upon similarities in behavior and the presence of a similar 5-HT transporter gene polymorphism. Stressful and threatening contexts in the nonhuman primate model have revealed 5-HT transporter genotype dependent differences in regional glucose metabolism. Using the rhesus monkey, we examined the extent to which serotonin transporter genotype is associated with 5-HT transporter binding in brain regions implicated in emotion-related pathology.Methods-Genotype data and high resolution PET scans were acquired in 29 rhesus (macaca mulatta) monkeys. [C-11]DASB dynamic PET scans were acquired for 90 minutes in the anesthetized animals and images of distribution volume ratio (DVR) were created to serve as a metric of 5-HT transporter binding for group comparison based on a reference region method of analysis. Regional and voxelwise statistical analysis were performed with corrections for anatomical differences in gray matter probability, sex, age and radioligand mass.Results-There were no significant differences when comparing 1/1 homozygotes with s-carriers in the regions of the brain implicated in anxiety and mood related illnesses (amygdala, striatum, thalamus, raphe nuclei, temporal and prefrontal cortex). There was a significant sex difference in 5-HT transporter binding in all regions with females having 18% -28% higher DVR than males.Conclusions-Because these findings are consistent with similar genotype findings in humans, this further strengthens the use of the rhesus model for studying anxiety related neuropathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.