Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: ideally, methods that can scale data volumes adaptively so as to enable negotiation of performance and fidelity tradeoffs in different situations. Multigrid-based hierarchical data representations hold promise as a solution to this problem, allowing for flexible conversion between different fidelities so that, for example, data can be created at high fidelity and then transferred or stored at lower fidelity via logically simple and mathematically sound operations. However, the effective use of such representations has been hindered until now by the relatively high costs of creating, accessing, reducing, and otherwise operating on such representations. We describe here highly optimized data refactoring kernels for GPU accelerators that enable efficient creation and manipulation of data in multigrid-based hierarchical forms. We demonstrate that our optimized design can achieve up to 264 TB/s aggregated data refactoring throughput-92% of theoretical peak-on 1024 nodes of the Summit supercomputer. We showcase our optimized design by applying it to a large-scale scientific visualization workflow and the MGARD lossy compression software.
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Multigrid-based hierarchical data refactoring is a class of promising approaches to this problem. These approaches decompose data hierarchically; the decomposed components can then be selectively and intelligently stored or shared, based on their relative importance in the original data. Efficient data refactoring design is one key to making these methods truly useful. In this paper, we describe highly optimized data refactoring kernels on GPU accelerators that are specialized for refactoring scientific data. We demonstrate that our optimized design can achieve 45.42 TB/s aggregated data refactoring throughput when using 4,096 GPUs of the Summit supercomputer. Finally, we showcase our optimized design by applying it to a large-scale scientific visualization workflow and the MGARD lossy compression software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.