Millions of people worldwide suffer from diseases that lead to paralysis through disruption of signal pathways between the brain and the muscles. Neuroprosthetic devices are designed to restore lost function and could be used to form an electronic 'neural bypass' to circumvent disconnected pathways in the nervous system. It has previously been shown that intracortically recorded signals can be decoded to extract information related to motion, allowing non-human primates and paralysed humans to control computers and robotic arms through imagined movements. In non-human primates, these types of signal have also been used to drive activation of chemically paralysed arm muscles. Here we show that intracortically recorded signals can be linked in real-time to muscle activation to restore movement in a paralysed human. We used a chronically implanted intracortical microelectrode array to record multiunit activity from the motor cortex in a study participant with quadriplegia from cervical spinal cord injury. We applied machine-learning algorithms to decode the neuronal activity and control activation of the participant's forearm muscles through a custom-built high-resolution neuromuscular electrical stimulation system. The system provided isolated finger movements and the participant achieved continuous cortical control of six different wrist and hand motions. Furthermore, he was able to use the system to complete functional tasks relevant to daily living. Clinical assessment showed that, when using the system, his motor impairment improved from the fifth to the sixth cervical (C5-C6) to the seventh cervical to first thoracic (C7-T1) level unilaterally, conferring on him the critical abilities to grasp, manipulate, and release objects. This is the first demonstration to our knowledge of successful control of muscle activation using intracortically recorded signals in a paralysed human. These results have significant implications in advancing neuroprosthetic technology for people worldwide living with the effects of paralysis.
The sophistication and resolution of current implantable medical devices are limited by the need connect each sensor separately to data acquisition systems. The ability of these devices to sample and modulate tissues is further limited by the rigid, planar nature of the electronics and the electrode-tissue interface. Here, we report the development of a class of mechanically flexible silicon electronics for measuring signals in an intimate, conformal integrated mode on the dynamic, three dimensional surfaces of soft tissues in the human body. We illustrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating heart in vivo. The devices sample with simultaneous sub-millimeter and sub-millisecond resolution through 288 amplified and multiplexed channels. We use these systems to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This clinical-scale demonstration represents one example of many possible uses of this technology in minimally invasive medical devices.[Conformal electronics and sensors intimately integrated with living tissues enable a new generation of implantable devices capable of addressing important problems in human health.]
Individuals with tetraplegia identify restoration of hand function as a critical, unmet need to regain their independence and improve quality of life. Brain-Computer Interface (BCI)-controlled Functional Electrical Stimulation (FES) technology addresses this need by reconnecting the brain with paralyzed limbs to restore function. In this study, we quantified performance of an intuitive, cortically-controlled, transcutaneous FES system on standardized object manipulation tasks from the Grasp and Release Test (GRT). We found that a tetraplegic individual could use the system to control up to seven functional hand movements, each with >95% individual accuracy. He was able to select one movement from the possible seven movements available to him and use it to appropriately manipulate all GRT objects in real-time using naturalistic grasps. With the use of the system, the participant not only improved his GRT performance over his baseline, demonstrating an increase in number of transfers for all objects except the Block, but also significantly improved transfer times for the heaviest objects (videocassette (VHS), Can). Analysis of underlying motor cortex neural representations associated with the hand grasp states revealed an overlap or non-separability in neural activation patterns for similarly shaped objects that affected BCI-FES performance. These results suggest that motor cortex neural representations for functional grips are likely more related to hand shape and force required to hold objects, rather than to the objects themselves. These results, demonstrating multiple, naturalistic functional hand movements with the BCI-FES, constitute a further step toward translating BCI-FES technologies from research devices to clinical neuroprosthetics.
Neuroprosthetics that combine a brain computer interface (BCI) with functional electrical stimulation (FES) can restore voluntary control of a patients’ own paralyzed limbs. To date, human studies have demonstrated an “all-or-none” type of control for a fixed number of pre-determined states, like hand-open and hand-closed. To be practical for everyday use, a BCI-FES system should enable smooth control of limb movements through a continuum of states and generate situationally appropriate, graded muscle contractions. Crucially, this functionality will allow users of BCI-FES neuroprosthetics to manipulate objects of different sizes and weights without dropping or crushing them. In this study, we present the first evidence that using a BCI-FES system, a human with tetraplegia can regain volitional, graded control of muscle contraction in his paralyzed limb. In addition, we show the critical ability of the system to generalize beyond training states and accurately generate wrist flexion states that are intermediate to training levels. These innovations provide the groundwork for enabling enhanced and more natural fine motor control of paralyzed limbs by BCI-FES neuroprosthetics.
To demonstrate naturalistic motor control speed, coordinated grasp, and carryover from trained to novel objects by an individual with tetraplegia using a brain-computer interface (BCI)-controlled neuroprosthetic. Design: Phase I trial for an intracortical BCI integrated with forearm functional electrical stimulation (FES). Data reported span postimplant days 137 to 1478. Setting: Tertiary care outpatient rehabilitation center. Participant: A 27-year-old man with C5 class A (on the American Spinal Injury Association Impairment Scale) traumatic spinal cord injury Interventions: After array implantation in his left (dominant) motor cortex, the participant trained with BCI-FES to control dynamic, coordinated forearm, wrist, and hand movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.