Recovering waste heat from automobiles remains an inviting subject for research. Solid-state thermoelectric generators (TEGs) have been widely investigated for this purpose, but their practical application remains challenging. An alternative to TEGs are thermogalvanic cells. Temperature difference between hot and cold electrodes creates a potential difference. Once connected to a load, electrical current and power are delivered, converting heat into electricity. In this work, we investigate the feasibility of incorporating such systems into automobiles. We carry out the experiments under real-world conditions. A climate-controlled wind tunnel is built to provide equivalent conditions to the ambient air stream under the car. The demonstrated system achieved a power density on the order of mW m−2. We compare the power generated to those of TEGs currently tested by GM, Honda, BMW and Ford. Further, a simple economic estimation is calculated to assess the $ per Watt cost of future practical thermogalvanic waste heat recovery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.