We consider the optimal liquidation of a position of stock (long or short) where trading has a temporary market impact on the price. The aim is to minimize both the mean and variance of the order slippage with respect to a benchmark given by the market volume-weighted average price (VWAP). In this setting, we introduce a new model for the relative volume curve which allows simultaneously for accurate data fit, economic justification, and mathematical tractability. Tackling the resulting optimization problem using a stochastic control approach, we derive and solve the corresponding Hamilton-Jacobi-Bellman equation to give an explicit characterization of the optimal trading rate and liquidation trajectory.
In this article the problem of curve following in an illiquid market is addressed. The optimal control is characterised in terms of the solution to a coupled FBSDE involving jumps via the technique of the stochastic maximum principle. Analysing this FBSDE, we further show that there are buy and sell regions. In the case of quadratic penalty functions the FBSDE admits an explicit solution which is determined via the four step scheme. The dependence of the optimal control on the target curve is studied in detail.Keywords Stochastic maximum principle · Convex analysis · Fully coupled forward backward stochastic differential equations · Trading in illiquid markets JEL Classification 93E20 · 91G80 · C02 · C61
In the present article we provide existence, uniqueness and stability results under an exponential moments condition for quadratic semimartingale backward stochastic differential equations (BSDEs) having convex generators. We show that the martingale part of the BSDE solution defines a true change of measure and provide an example which demonstrates that pointwise convergence of the drivers is not sufficient to guarantee a stability result within our framework.
We address a constrained utility maximization problem in an incomplete market for a utility function defined on the whole real line. We extend current research in two directions, firstly we allow for constraints on the portfolio process. Secondly we prove our results without relying on the technique of quadratic inf convolution, simplifying the proofs in this area.
We continue the study of utility maximization in the nonsmooth setting and give a counterexample to a conjecture made in [3] on the optimality of random variables valued in an appropriate subdifferential. We derive minimal sufficient conditions on a random variable for it to be a primal optimizer in the case where the utility function is not strictly concave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.