Reaction of N-heterocyclic-carbene (NHC)-stabilized disilicon (1) with CuCl gave a carbene-stabilized disilicon-copper(I) chloride complex (2). The nature of the structure and bonding in 2 has been investigated by crystallographic, spectroscopic, and computational methods. The dynamic complexation behavior of 2 was experimentally explored by variable-temperature NMR analysis.
Mixtures of chloride and iodate salts for light alkane oxidation achieve >20% yield of methyl trifluoroacetate (TFA) from methane with >85% selectivity. The mechanism of this C−H oxygenation has been probed by examining adamantane as a model substrate. These recent results lend support to the involvement of free radicals. Comparative studies between radical chlorination and iodate/chloride functionalization of adamantane afford statistically identical 3°:2°selectivities (∼5.2:1) and kinetic isotope effects for C−H/C−D functionalization (k H /k D = 1.6(3), 1.52(3)). Alkane functionalization by iodate/chloride in HTFA is proposed to occur through H-atom abstraction by free radical species including Cl • to give alkyl radicals. Iodine, which forms by in situ reduction of iodate, traps alkyl radicals as alkyl iodides that are subsequently converted to alkyl esters in HTFA solvent. Importantly, the alkyl ester products (RTFA) are quite stable to further oxidation under the oxidizing conditions due to the protecting nature of the ester moiety.
Low temperature reaction of N-heterocyclic carbene : BEt3 with nBuLi (in THF) initially gives the C4-lithiated N-heterocyclic carbene : BEt3 complex (4), which isomerizes to the C2-lithiated abnormal N-heterocyclic carbene : BEt3 complex (2) in refluxing THF. While reaction of with GaCl3 gives a 4-functionalized N-heterocyclic carbene : GaCl3 adduct (6), reaction of with GaCl3 affords the first abnormal carbene-gallium chloride complexes (5).
The decomposition of a series of benzylidene, methylidene, and 3‐phenylindenylidene complexes has been probed in alcohol solution in the presence of base. Tricyclohexylphosphane‐containing precatalysts are shown to yield [RuCl(H)(H2)(PCy3)2] in isopropyl alcohol solutions, while 3‐phenylindenylidene complexes lead to η5‐(3‐phenyl)indenyl products. The potential‐energy surfaces for the formation of the latter species have been probed using density functional theory studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.