Purpose: Pancreatic cancer is an aggressive human malignancy that is generally refractory to chemotherapy. Histone deacetylase inhibitors are novel agents that modulate cell growth and survival. In this study, we sought to determine whether a relatively new histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), inhibits pancreatic cancer cell growth. Experimental Design: The effects of SAHA on the growth of three pancreatic cancer cell lines (BxPC3, COLO-357, and PANC-1) were examined with respect to cell cycle progression, p21induction and localization, and interactions with the nucleoside analogue gemcitabine. Results: SAHA induced a G 1 cell cycle arrest in BxPC-3 cells and COLO-357 cells but not in PANC-1 cells. This arrest was dependent, in part, on induction of p21 by SAHA, as p21 was not induced in PANC-1 cells, and knockdown of p21 using small interfering RNA oligonucleotides nearly completely suppressed the effects of SAHA on cell cycle arrest in COLO-357 and partly attenuated the effects of SAHA in BxPC-3. COLO-357 and BxPC-3 cells, but not PANC-1cells, were also sensitive to gemcitabine. In the gemcitabine-resistant PANC-1cells, a 48-h cotreatment with SAHA rendered the cells sensitive to the inhibitory and proapoptotic effects of gemcitabine. An additive effect on growth inhibition by SAHA and gemcitabine was observed in COLO-357 and BxPC-3 cells. Moreover, analysis of p21distribution in COLO-357 cells revealed that SAHA induced the cytoplasmic localization of both p21and phospho-p21. Conclusions: These data indicate that SAHA exerts proapoptotic effects in pancreatic cancer cells, in part, by up-regulating p21and sequestering it in the cytoplasm, raising the possibility that SAHA may have therapeutic potential in the treatment of pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive human malignancy in which Smad7 is commonly overexpressed. Analysis by differential display identified thioredoxin-1 (TRX) as a gene whose basal expression is increased in COLO-357 pancreatic cancer cells engineered to overexpress Smad7. To delineate the biological consequences of TRX overexpression, we assessed TRX mRNA levels in PDAC and studied the effects of increased TRX levels in Smad7-overexpressing cells. By northern blotting, TRX mRNA levels were increased in PDAC samples by comparison with the normal pancreas. Moreover, analysis of lasercaptured pancreatic cancer cells revealed parallel increases in Smad7 and TRX mRNA levels. Retroviral infection of an antisense TRX cDNA suppressed TRX protein levels and blunted the increased capacity of Smad7-overexpressing cells to form colonies in soft agar. 1-Methyl-propyl-2-imidazolozyl disulfide, a TRX inhibitor, markedly suppressed the growth of sham-transfected COLO-357 cells and enhanced the growth inhibitory actions of cis-diamminedichloroplatinum(II) (CDDP). CDDP also induced apoptosis, as evidenced by induction of DNA laddering, PARP cleavage, and caspase-3/9 activities. These pro-apoptotic actions were greatly attenuated in Smad7-overexpressing cells, which exhibited a more prolonged association of TRX with the apoptosis inducer apoptosis signal-regulating kinase-1, and enhanced nuclear factor B activation in response to CDDP. These findings suggest that TRX is downstream of Smad7 in a pathway that confers a growth advantage to pancreatic cancer cells and that increases their resistance to CDDP-mediated apoptosis, implying novel regulatory functions for Smad7.
The EGF family of ligands and receptors plays an important role in the pathogenesis of pancreatic ductal adenocarcinoma (PDAC) and contributes to its aggressiveness. A number of molecular approaches have been developed to block these pathways, and studies have already proven the clinical benefit of this concept in PDAC. In the present study, we sought to determine the potential role of heregulins (HRGs), a family of EGF-like growth factors, in PDAC. Quantitative RT-PCR analysis revealed that HRGs as well as its signaling ErbB receptors were present in 4 of 4 human pancreatic cancer cell lines (PCCL). HRG-b1 stimulated the growth of 3 of 4 PCCL, whereas HRG-a1 inhibited cell growth in 3 of 4 cell lines. Responses towards HRGs could in part be predicted by ErbB2 and ErbB3 expression levels. HRGs induced phosphorylation of different ErbB receptors as well as activation of MAPK, p38MAPK, JNK and PI3K in a cell-and ligand-specific manner. In vivo, HRG was upregulated in pancreatic cancer tissues and localized predominantly in the cancer cells. High HRG-b levels but not HRG-a levels were associated with decreased patient survival. In conclusion, HRG is expressed by pancreatic cancer cells and influences pancreatic cancer cell growth and patient survival. ' 2006 Wiley-Liss, Inc.
Smad7 is overexpressed in 50% of human pancreatic cancers. COLO-357 pancreatic cancer cells engineered to overexpress Smad7 are resistant to the actions of transforming growth factor-1 (TGF-1) with respect to growth inhibition and cisplatin-induced apoptosis but not with respect to modulation of gene expression. To delineate the mechanisms underlying these divergent consequences of Smad7 overexpression, we studied the effects of Smad7 on TGF-1-dependent signaling pathways and cell cycle regulating proteins. TGF-1 induced the phosphorylation of MAPK, p38 MAPK, and AKT2 irrespective of the levels of Smad7, and inhibitors of these pathways did not alter TGF-1 actions on cell growth. By contrast, Smad7 overexpression interfered with TGF-1-mediated attenuation of cyclin A and B levels, inhibition of cdc2 dephosphorylation and CDK2 inactivation, up-regulation of p27, and the maintenance of the retinoblastoma protein (RB) in a hypophosphorylated state. Smad7 also suppressed TGF-1-mediated inhibition of E2F activity but did not alter TGF-1-mediated phosphorylation of Smad2, the nuclear translocation of Smad2/3/4, or DNA binding of the Smad2/3/4 complex. Although Smad7 did not associate with the type I TGF- receptor (TRI), SB-431542, an inhibitor of the kinase activity of this receptor, blocked TGF-1-mediated effects on Smad-2 phosphorylation. These findings point toward a novel paradigm whereby Smad7 acts to functionally inactivate RB and de-repress E2F without blocking the activation of TRI and the nuclear translocation of Smad2/3, thereby allowing for TGF-1 to exert effects in a cancer cell that is resistant to TGF-1-mediated growth inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.