The principal pathological features of Alzheimer's disease (AD) are extracellular amyloid plaques and intracellular neurofibrillary tangles, the latter composed of the microtubule-binding protein tau assembled into paired helical and straight filaments. Recent studies suggest that these pathological entities may be functionally linked, although the mechanisms by which amyloid deposition promotes pathological tau filament assembly are poorly understood. Here, we report that tau is proteolyzed by multiple caspases at a highly conserved aspartate residue (Asp 421 ) in its C terminus in vitro and in neurons treated with amyloid- (A) (1-42) peptide. Tau is rapidly cleaved at Asp 421 in A-treated neurons (within 2 h), and its proteolysis appears to precede the nuclear events of apoptosis. We also demonstrate that caspase cleavage of tau generates a truncated protein that lacks its C-terminal 20 amino acids and assembles more rapidly and more extensively into tau filaments in vitro than wild-type tau. Using a monoclonal antibody that specifically recognizes tau truncated at Asp 421 , we show that tau is proteolytically cleaved at this site in the fibrillar pathologies of AD brain. Taken together, our results suggest a novel mechanism linking amyloid deposition and neurofibrillary tangles in AD: A peptides promote pathological tau filament assembly in neurons by triggering caspase cleavage of tau and generating a proteolytic product with enhanced polymerization kinetics. A lzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by accelerated neuronal cell death leading to dementia (1). Its hallmark pathologic features are extracellular amyloid plaques and intraneuronal fibrillar structures, the latter including neurofibrillary tangles (NFTs), neuropil threads, and dystrophic neurites invading amyloid plaques (2). Amyloid plaques are formed by the extracellular deposition of proteolytic fragments of the amyloid precursor protein (APP) termed amyloid- (A) (1, 3), whereas the fibrillar pathologies are composed of the microtubule-associated protein tau assembled into polymeric filaments (paired helical and straight filaments) (2). The pathogenic role of amyloid deposition in AD is underscored by the evidence that each of the disease-causing mutations in familial AD results in enhanced production of amyloidogenic A peptides; these peptides are sufficient to induce apoptosis in cultured neurons (1, 3). Furthermore, the recent observation that tau mutations cause hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), a class of diseases characterized by NFT-like deposition of polymeric tau and dementia without amyloid plaques, emphasizes the critical role that tau plays in neurodegenerative events (4-6). Although amyloid plaques and NFTs have been largely regarded as independent neuropathologic entities, recent work suggests they may be functionally linked: mutation of APP that results in amyloid deposition or direct intracranial injection of A peptide increase...
Adult-onset neurodegenerative diseases (AONDs) comprise a heterogeneous group of neurological disorders characterized by a progressive, age-dependent decline in neuronal function and loss of selected neuronal populations. Alterations in synaptic function and axonal connectivity represent early and critical pathogenic events in AONDs, but molecular mechanisms underlying these defects remain elusive. The large size and complex subcellular architecture of neurons render them uniquely vulnerable to alterations in axonal transport (AT). Accordingly, deficits in AT have been documented in most AONDs, suggesting a common defect acquired through different pathogenic pathways. These observations suggest that many AONDs can be categorized as dysferopathies, diseases in which alterations in AT represent a critical component in pathogenesis. Topics here address various molecular mechanisms underlying alterations in AT in several AONDs. Illumination of such mechanisms provides a framework for the development of novel therapeutic strategies aimed to prevent axonal and synaptic dysfunction in several major AONDs.
Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer’s disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2–18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.
The neuropathology of Alzheimer's disease (AD) and other tauopathies is characterized by filamentous deposits of the microtubule-associated protein tau, but the relationship between tau polymerization and neurotoxicity is unknown. Here, we examined effects of filamentous tau on fast axonal transport (FAT) using isolated squid axoplasm. Monomeric and filamentous forms of recombinant human tau were perfused in axoplasm, and their effects on kinesin- and dynein-dependent FAT rates were evaluated by video microscopy. Although perfusion of monomeric tau at physiological concentrations showed no effect, tau filaments at the same concentrations selectively inhibited antero-grade (kinesin-dependent) FAT, triggering the release of conventional kinesin from axoplasmic vesicles. Pharmacological experiments indicated that the effect of tau filaments on FAT is mediated by protein phosphatase 1 (PP1) and glycogen synthase kinase-3 (GSK-3) activities. Moreover, deletion analysis suggested that these effects depend on a conserved 18-amino-acid sequence at the amino terminus of tau. Interestingly, monomeric tau isoforms lacking the C-terminal half of the molecule (including the microtubule binding region) recapitulated the effects of full-length filamentous tau. Our results suggest that pathological tau aggregation contributes to neurodegeneration by altering a regulatory pathway for FAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.