Real-world problems, often couched as machine learning applications, involve quantities of interest that have real-world meaning, independent of any statistical model. To avoid potential model misspecification bias or over-complicating the problem formulation, a direct, model-free approach is desired. The traditional Bayesian framework relies on a model for the data-generating process so, apparently, the desired direct, model-free, posterior-probabilistic inference is out of reach. Fortunately, likelihood functions are not the only means of linking data and quantities of interest. Loss functions provide an alternative link, where the quantity of interest is defined, or at least could be defined, as a minimizer of the corresponding risk, or expected loss. In this case, one can obtain what is commonly referred to as a Gibbs posterior distribution by using the empirical risk function directly. This manuscript explores the Gibbs posterior construction, its asymptotic concentration properties, and the frequentist calibration of its credible regions. By being free from the constraints of model specification, Gibbs posteriors create new opportunities for probabilistic inference in modern statistical learning problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.