Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still 'aspatial' and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity.
Information about the location and extent of informal settlements is necessary to guide decision making and resource allocation for their upgrading. Very high resolution (VHR) satellite images can provide this useful information, however, different urban settlement types are hard to be automatically discriminated and extracted from VHR imagery, because of their abstract semantic class definition. State-of-the-art classification techniques rely on hand-engineering spatial-contextual features to improve the classification results of pixel-based methods. In this paper, we propose to use convolutional neural networks (CNNs) for learning discriminative spatial features, and perform automatic detection of informal settlements. The experimental analysis is carried out on a QuickBird image acquired over Dar es Salaam, Tanzania. The proposed technique is compared against support vector machines (SVMs) using texture features extracted from grey level co-occurrence matrix (GLCM) and local binary patterns (LBP), which result in accuracies of 86.65% and 90.48%, respectively. CNN leads to better classification, resulting in an overall accuracy of 91.71%. A sensitivity analysis shows that deeper networks result in higher accuracies when large training sets are used. The study concludes that training CNN in an end-to-end fashion can automatically learn spatial features from the data that are capable of discriminating complex urban land use classes.
Up-to-date and reliable land-use information is essential for a variety of applications such as planning or monitoring of the urban environment. This research presents a workflow for mapping urban land use at the street block level, with a focus on residential use, using very-high resolution satellite imagery and derived land-cover maps as input. We develop a processing chain for the automated creation of street block polygons from OpenStreetMap and ancillary data. Spatial metrics and other street block features are computed, followed by feature selection that reduces the initial datasets by more than 80%, providing a parsimonious, discriminative, and redundancy-free set of features. A random forest (RF) classifier is used for the classification of street blocks, which results in accuracies of 84% and 79% for five and six land-use classes, respectively. We exploit the probabilistic output of RF to identify and relabel blocks that have a high degree of uncertainty. Finally, the thematic precision of the residential blocks is refined according to the proportion of the built-up area. The output data and processing chains are made freely available. The proposed framework is able to process large datasets, given that the cities in the case studies, Dakar and Ouagadougou, cover more than 1000 km 2 in total, with a spatial resolution of 0.5 m.
Ninety percent of the people added to the planet over the next 30 years will live in African and Asian cities, and a large portion of these populations will reside in deprived neighborhoods defined by slum conditions, informal settlement, or inadequate housing. The four current approaches to neighborhood deprivation mapping are largely siloed, and each fall short of producing accurate, timely, and comparable maps that reflect local contexts. The first approach, classifying “slum households” in census and survey data, reflects household-level rather than neighborhood-level deprivation. The second approach, field-based mapping, can produce the most accurate and context-relevant maps for a given neighborhood, however it requires substantial resources, preventing up-scaling. The third and fourth approaches, human (visual) interpretation and machine classification of air or spaceborne imagery, both overemphasize informal settlements, and fail to represent key social characteristics of deprived areas such as lack of tenure, exposure to pollution, and lack of public services. We summarize common areas of understanding, and present a set of requirements and a framework to produce routine, accurate maps of deprived urban areas that can be used by local-to-international stakeholders for advocacy, planning, and decision-making across Low- and Middle-Income Countries (LMICs). We suggest that machine learning models be extended to incorporate social area-level covariates and regular contributions of up-to-date and context-relevant field-based classification of deprived urban areas.
Land cover Classified maps obtained from deep learning methods such as Convolutional neural networks (CNNs) and fully convolutional networks (FCNs) usually have high classification accuracy but with the detailed structures of objects lost or smoothed. In this work, we develop a methodology based on fully convolutional networks (FCN) that is trained in an end-to-end fashion using aerial RGB images only as input. Skip connections are introduced into the FCN architecture to recover high spatial details from the lower convolutional layers. The experiments are conducted on the city of Goma in the Democratic Republic of Congo. We compare the results to a state-of-the art approach based on a semi-automatic Geographic object image-based analysis (GEOBIA) processing chain. State-of-the art classification accuracies are obtained by both methods whereby FCN and the best baseline method have an overall accuracy of 91.3% and 89.5% respectively. The maps have good visual quality and the use of an FCN skip architecture minimizes the rounded edges that is characteristic of FCN maps. Additional experiments are done to refine FCN classified maps using segments obtained from GEOBIA generated at different scale and minimum segment size. High OA of up to 91.5% is achieved accompanied with an improved edge delineation in the FCN maps, and future work will involve explicitly incorporating boundary information from the GEOBIA segmentation into the FCN pipeline in an end-to-end fashion. Finally, we observe that FCN has a lower computational cost than the standard patch-based CNN approach especially at inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.