The discrete-element method (DEM) was used to simulate constant-volume (undrained) triaxial compression tests for coarse particles (sand) mixed with non-plastic fines. Simulations were performed on granular mixtures with a range of fines contents (fc) – namely, 0, 0·05, 0·10 and 0·20. The critical state and micromechanical responses of these mixtures were evaluated. The influence of fc on sand behaviour was captured when fc < fthre, where fthre represents a threshold fines content, which corresponds to a transition from a fines-in-sand soil matrix to a sand-in-fines soil matrix. The DEM was utilised to assess the micromechanical participation of fines within the sand skeleton (matrix). Such evaluations led to assessing the performance of the equivalent granular void ratio (e*), the equivalent granular state parameter (ψ*) and ultimately their inherent parameter b, which represents the proportion of fines actively participating in the sand skeleton structure. It was observed that through capturing the stress partition of contact types within granular mixtures, a reasonable approximation of the active proportion of contacts within the sand matrix could be obtained. This led to a new DEM interpretation of the b parameter. The study therefore evaluated the concept and applicability of the equivalent state theory for sand–fines mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.