3D models are accurate replicas of the cardiovascular anatomy and improve the understanding of complex CHD. 3D models did not change the surgical decision in most of the cases (21 of 40 cases, 52.5% cases). However, in 19 of the 40 selected complex cases, 3D model helped redefining the surgical approach.
BackgroundShortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes.MethodsA systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded.ResultsTotally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced.Conclusions and implication of key findingsPredominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.