Understanding the distribution of plant species and vegetation communities is important for effective conservation planning and ecosystem management, but many parts of the world remain under-surveyed. The Top End of Australia’s Northern Territory is vast, remote, and sparsely populated; knowledge of the flora, in many areas, is limited to common or dominant species. Here, we describe and contrast the benefits and trade-offs between two approaches to botanical survey – vegetation sampling (assessment of structural attributes and species composition, fundamentally for mapping purposes) and hybrid floristic survey (an intensive, inventory approach considering seasonality) – as applied in each of four remote areas of the Australian wet–dry monsoonal tropics. Hybrid floristic survey effectively doubled the species richness recorded within each study area, largely due to improved detections of forbs and sedges. Species-sampling effort relationships predicted hybrid floristic survey to consistently out-perform vegetation sampling in maximum species richness and rate of species accumulation. Although vegetation sampling offers an efficient means of circumscribing vegetation communities over large areas, hybrid floristic survey improved detection of seasonal species and, potentially, those of conservation concern. Strategic, proactive investment in hybrid floristic surveys may offer improved conservation outcomes and potential efficiency dividends in biodiversity conservation planning.
To help evaluate the distribution, residency, population size and structuring (and hence conservation status) of the poorly known false killer whale Pseudorca crassidens in northern Australian waters, we undertook studies of sightings, movement patterns based on satellite telemetry, and genetics. Sighting data indicates that false killer whales are regular, year-round inhabitants of coastal areas of northern Australia. Satellite-tagged animals spent extended periods of time in shallow coastal waters, with no tagged animals leaving the continental shelf. The lack of spatial overlap in the areas visited by individuals tagged in the Arafura/Timor Seas compared to those tagged in the Gulf of Carpentaria suggests that there may be more than one population in northern Australia coastal waters. All 14 genetic samples collected across 1600 km of coastline possessed the same newly identified mitochondrial control region haplotype, designated haplotype 45. Notably, haplotype 45 is distinct from all previously published false killer whale haplotypes globally and is most similar to the two haplotypes that typify the endangered main Hawaiian Islands insular false killer whale population. Based on these results and evidence from recent movement records of those tagged, false killer whales in northern Australia are apparently demographically independent from the offshore population(s). Further assessment of the population conservation status is now required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.