BackgroundThe long-term prognosis after acute kidney injury (AKI) is variable. It is unclear how the prognosis of AKI and its relationship to prognostic factors (baseline kidney function, AKI severity, prior AKI episodes, and recovery of kidney function) change as follow-up progresses.Study DesignObservational cohort study.Setting & ParticipantsThe Grampian Laboratory Outcomes Morbidity and Mortality Study II (GLOMMS-II) is a large regional population cohort with complete serial biochemistry and outcome data capture through data linkage. From GLOMMS-II, we followed up 17,630 patients hospitalized in 2003 through to 2013.PredictorsAKI identified using KDIGO (Kidney Disease: Improving Global Outcomes) serum creatinine criteria, characterized by baseline kidney function (estimated glomerular filtration rate [eGFR] ≥ 60, 45-59, 30-44, and <30 mL/min/1.73 m2), AKI severity (KDIGO stage), 90-day recovery of kidney function, and prior AKI episodes.OutcomesIntermediate- (30-364 days) and long-term (1-10 years) mortality and long-term renal replacement therapy.MeasurementsPoisson regression in time discrete intervals. Multivariable Cox regression for those at risk in the intermediate and long term, adjusted for age, sex, baseline comorbid conditions, and acute admission circumstances.ResultsOf 17,630 patients followed up for a median of 9.0 years, 9,251 died. Estimated incidences of hospital AKI were 8.4% and 17.6% for baseline eGFRs ≥ 60 and <60 mL/min/1.73 m2, respectively. Intermediate-term (30-364 days) adjusted mortality HRs for AKI versus no AKI were 2.48 (95% CI, 2.15-2.88), 2.50 (95% CI, 2.04-3.06), 1.90 (95% CI, 1.51-2.39), and 1.63 (95% CI, 1.20-2.22) for eGFRs ≥ 60, 45 to 59, 30 to 44, and <30 mL/min/1.73 m2, respectively. Among 1-year survivors, long-term HRs were attenuated: 1.44 (95% CI, 1.31-1.58), 1.25 (95% CI, 1.09-1.43), 1.21 (95% CI, 1.03-1.42), and 1.08 (95% CI, 0.85-1.36), respectively. The excess long-term hazards in AKI were lower for lower baseline eGFRs (P for interaction = 0.01).LimitationsNonprotocolized observational data. No adjustment for albuminuria.ConclusionsThe prognostic importance of a discrete AKI episode lessens over time. Baseline kidney function is of greater long-term importance.
Background: There is strong biologic plausibility to support change in albuminuria as a surrogate endpoint for progression of chronic kidney disease (CKD), but empirical evidence to supports its validity in epidemiologic studies is lacking. Methods: We analyzed 28 cohorts including 693,816 individuals (80% with diabetes) and 7,461 end-stage kidney disease (ESKD) events, defined as initiation of kidney replacement therapy. Percent change in albuminuria was quantified during a baseline period of 1, 2 and 3 years using linear regression. Associations with subsequent ESKD were quantified using Cox regression in Coresh et al.
The extent to which renal progression after acute kidney injury (AKI) arises from an initial step drop in kidney function (incomplete recovery), or from a long-term trajectory of subsequent decline, is unclear. This makes it challenging to plan or time post-discharge follow-up. This study of 14651 hospital survivors in 2003 (1966 with AKI, 12685 no AKI) separates incomplete recovery from subsequent renal decline by using the post-discharge estimated glomerular filtration rate (eGFR) rather than the pre-admission as a new reference point for determining subsequent renal outcomes. Outcomes were sustained 30% renal decline and de novo CKD stage 4, followed from 2003-2013. Death was a competing risk. Overall, death was more common than subsequent renal decline (37.5% vs 11.3%) and CKD stage 4 (4.5%). Overall, 25.7% of AKI patients had non-recovery. Subsequent renal decline was greater after AKI (vs no AKI) (14.8% vs 10.8%). Renal decline after AKI (vs no AKI) was greatest among those with higher post-discharge eGFRs with multivariable hazard ratios of 2.29 (1.88-2.78); 1.50 (1.13-2.00); 0.94 (0.68-1.32) and 0.95 (0.64-1.41) at eGFRs of 60 or more; 45-59; 30-44 and under 30, respectively. The excess risk after AKI persisted over ten years of study, irrespective of AKI severity, or post-episode proteinuria. Thus, even if post-discharge kidney function returns to normal, hospital admission with AKI is associated with increased renal progression that persists for up to ten years. Follow-up plans should avoid false reassurance when eGFR after AKI returns to normal.
Background Some evidence suggests that chronic kidney disease is a risk factor for lower-extremity peripheral artery disease. We aimed to quantify the independent and joint associations of two measures of chronic kidney disease (estimated glomerular filtration rate [eGFR] and albuminuria) with the incidence of peripheral artery disease. Methods In this collaborative meta-analysis of international cohorts included in the Chronic Kidney Disease Prognosis Consortium (baseline measurements obtained between 1972 and 2014) with baseline measurements of eGFR and albuminuria, at least 1000 participants (this criterion not applied to cohorts exclusively enrolling patients with chronic kidney disease), and at least 50 peripheral artery disease events, we analysed adult participants without peripheral artery disease at baseline at the individual patient level with Cox proportional hazards models to quantify associations of creatinine-based eGFR, urine albumin-to-creatinine ratio (ACR), and dipstick proteinuria with the incidence of peripheral artery disease (including hospitalisation with a diagnosis of peripheral artery disease, intermittent claudication, leg revascularisation, and leg amputation). We assessed discrimination improvement through c-statistics. Findings We analysed 817 084 individuals without a history of peripheral artery disease at baseline from 21 cohorts. 18 261 cases of peripheral artery disease were recorded during follow-up across cohorts (median follow-up was 7·4 years [IQR 5·7–8·9], range 2·0–15·8 years across cohorts). Both chronic kidney disease measures were independently associated with the incidence of peripheral artery disease. Compared with an eGFR of 95 mL/min per 1·73 m2, adjusted hazard ratios (HRs) for incident study-specific peripheral artery disease was 1·22 (95% CI 1·14–1·30) at an eGFR of 45 mL/min per 1·73 m2 and 2·06 (1·70–2·48) at an eGFR of 15 mL/min per 1·73 m2. Compared with an ACR of 5 mg/g, the adjusted HR for incident study-specific peripheral artery disease was 1·50 (1·41–1·59) at an ACR of 30 mg/g and 2·28 (2·12–2·44) at an ACR of 300 mg/g. The adjusted HR at an ACR of 300 mg/g versus 5 mg/g was 3·68 (95% CI 3·00–4·52) for leg amputation. eGFR and albuminuria contributed multiplicatively (eg, adjusted HR 5·76 [4·90–6·77] for incident peripheral artery disease and 10·61 [5·70–19·77] for amputation in eGFR <30 mL/min per 1·73 m2 plus ACR ≥300 mg/g or dipstick proteinuria 2+ or higher vs eGFR ≥90 mL/min per 1·73 m2 plus ACR <10 mg/g or dipstick proteinuria negative). Both eGFR and ACR significantly improved peripheral artery disease risk discrimination beyond traditional predictors, with a substantial improvement prediction of amputation with ACR (difference in c-statistic 0·058, 95% CI 0·045–0·070). Patterns were consistent across clinical subgroups. Interpretation Even mild-to-moderate chronic kidney disease conferred increased risk of incident peripheral artery disease, with a strong association between albuminuria and amputation. Clinical attention should be paid to...
BackgroundEarly recognition of acute kidney injury (AKI) is important. It frequently develops first in the community. KDIGO-based AKI e-alert criteria may help clinicians recognize AKI in hospitals, but their suitability for application in the community is unknown.MethodsIn a large renal cohort (n = 50 835) in one UK health authority, we applied the NHS England AKI ‘e-alert’ criteria to identify and follow three AKI groups: hospital-acquired AKI (HA-AKI), community-acquired AKI admitted to hospital within 7 days (CAA-AKI) and community-acquired AKI not admitted within 7 days (CANA-AKI). We assessed how AKI criteria operated in each group, based on prior blood tests (number and time lag). We compared 30-day, 1- and 5-year mortality, 90-day renal recovery and chronic renal replacement therapy (RRT).ResultsIn total, 4550 patients met AKI e-alert criteria, 61.1% (2779/4550) with HA-AKI, 22.9% (1042/4550) with CAA-AKI and 16.0% (729/4550) with CANA-AKI. The median number of days since last blood test differed between groups (1, 52 and 69 days, respectively). Thirty-day mortality was similar for HA-AKI and CAA-AKI, but significantly lower for CANA-AKI (24.2, 20.2 and 2.6%, respectively). Five-year mortality was high in all groups, but followed a similar pattern (67.1, 64.7 and 46.2%). Differences in 5-year mortality among those not admitted could be explained by adjusting for comorbidities and restricting to 30-day survivors (hazard ratio 0.91, 95% confidence interval 0.80–1.04, versus hospital AKI). Those with CANA-AKI (versus CAA-AKI) had greater non-recovery at 90 days (11.8 versus 3.5%, P < 0.001) and chronic RRT at 5 years (3.7 versus 1.2%, P < 0.001).ConclusionsKDIGO-based AKI criteria operate differently in hospitals and in the community. Some patients may not require immediate admission but are at substantial risk of a poor long-term outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.