The synthesis of citrulline from glutamine was quantified in enterocytes from pre-weaning (14-21 days old) and post-weaning (29-58 days old) pigs. The cells were incubated at 37 degrees C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 0, 0.5, 2 and 5 mM glutamine. Oxygen consumption was linear during the 30 min incubation period. The rates of citrulline synthesis were low or negligible in enterocytes from 14-21-day-old pigs, but increased 10-20-fold in the cells from 29-58-day-old pigs. This marked elevation of citrulline synthesis coincided with an increase in the activity of pyrroline-5-carboxylate synthase with the animal's post-weaning growth. In contrast, decreases in the activities of phosphate-dependent glutaminase, ornithine aminotransferase, ornithine carbamoyltransferase and carbamoyl-phosphate synthase were observed as the age of the pigs increased. The concentrations of carbamoyl phosphate in enterocytes from pre-weaning pigs were higher than, or similar to, those in the cells from post-weaning pigs. It is possible that the low rate of citrulline synthesis from glutamine in enterocytes from pre-weaning pigs was due to a limited availability of ornithine, rather than that of carbamoyl phosphate. We suggest that this limited availability of ornithine in pre-weaning-pig enterocytes results from (i) the low rate of pyrroline-5-carboxylate synthesis from glutamate, due to the low activity of pyrroline-5-carboxylate synthase, and (ii) the competitive conversion of pyrroline-5-carboxylate into proline. Our present findings on the developmental aspect of citrulline synthesis in pig enterocytes may offer a biochemical mechanism for the previous observations that arginine is a nutritionally essential amino acid for suckling piglets, but not for adult pigs.
This study tested the hypothesis that L-glutamine (Gln) or L-alanyl-L-glutamine (Ala-Gln) prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Enterocytes of neonatal pigs rapidly hydrolyzed Ala-Gln and utilized Gln. To determine whether Gln or Ala-Gln has a cytoprotective effect, IPEC-1 cells were cultured for 24 h in Gln-free Dulbecco's modified Eagle's-F12 Ham medium containing 0, 0.5, 2.0 or 5.0 mM Gln or Ala-Gln, and 0, 0.5 mM H(2)O(2) or 30 ng/ml lipopolysaccharide (LPS). Without Gln or Ala-Gln, H(2)O(2)- or LPS-treated cells exhibited almost complete death. Gln or Ala-Gln at 0.5, 2 and 5 mM dose-dependently reduced H(2)O(2)- or LPS-induced cell death by 14, 54 and 95%, respectively, whereas D: -glutamine, alanine, glutamate, ornithine, proline, glucosamine or nucleosides had no effect. To evaluate the effectiveness of Gln or Ala-Gln in vivo, 7-day-old piglets received one-week oral administration of Gln or Ala-Gln (3.42 mmol/kg body weight) twice daily and then a single intraperitoneal injection of LPS (0.1 mg/kg body weight); piglets were euthanized in 24 and 48 h to analyze intestinal apoptotic proteins and morphology. Administration of Gln or Ala-Gln to LPS-challenged piglets increased Gln concentrations in small-intestinal lumen and plasma, reduced intestinal expression of Toll-like receptor-4, active caspase-3 and NFkB, ameliorated intestinal injury, decreased rectal temperature, and enhanced growth performance. These results demonstrate a protective effect of Gln or Ala-Gln against H(2)O(2)- or LPS-induced enterocyte death. The findings support addition of Gln or Ala-Gln to current Gln-free pediatric amino acid solutions to prevent intestinal oxidative injury and inflammatory disease in neonates.
Glutamine and glucose metabolism was studied in 0- to 21-day-old pig enterocytes. Cells were incubated at 37 degrees C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) in the presence of 2 mM [U-14C]glutamine with or without 5 mM glucose, or 5 mM [U-14C]glucose with or without 2 mM glutamine. Glutamine was metabolized to ammonia, glutamate, alanine, aspartate, CO2, citrulline, ornithine, and proline, whereas glucose was converted to lactate, pyruvate, and CO2 in pig enterocytes. CO2 production from glutamine accounted for 32-36% and 3-4% of utilized glutamine carbons in 0- to 7-day-old and 14- to 21-day-old pigs, respectively. The rates of O2 consumption and metabolism of glutamine and glucose decreased in enterocytes from 2- to 14-day-old pigs compared with 0-day-old pigs. By day 14 after birth, the oxidation of glutamine and glucose as well as citrulline production had decreased by 90-95%. Arginine synthesis from glutamine occurred in cells from 0- to 7-day-old pigs but not 14- to 21-day-old ones. Glucose (5 mM) had no effect on glutamine utilization and oxidation or the production of glutamate and arginine but stimulated the formation of alanine, citrulline, and proline at the expense of aspartate. In contrast, glutamine (2 mM) inhibited glycolysis and glucose oxidation in cells from 0- to 7-day-old pigs and had no effects in 14- to 21-day-old pigs. As a result, glutamine contributed approximately 2-fold greater amounts of ATP to 0- to 7-day-old pig enterocytes than glucose.(ABSTRACT TRUNCATED AT 250 WORDS)
Effects of dietary protein or arginine deficiency on constitutive and lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis were determined in young rats by quantifying urinary nitrate excretion. In Experiment 1, 30-d-old rats (n = 16) were divided randomly into two groups (n = 8/group) and pair-fed on the basis of body weight semipurified isocaloric diets containing 20 or 5% casein. In Experiment 2, 30-d-old rats (n = 24) were divided randomly into three groups (n = 8) and pair-fed on the basis of body weight purified isonitrogenous and isocaloric diets (composed of amino acids) containing 0.0, 0.3 or 1.0% L-arginine. In both experiments, daily collection of urine was initiated 10 d after the start of pair-feeding. On d 17 after the pair-feeding was initiated, LPS (1 mg/kg body wt) was injected intraperitoneally into rats, and urine was collected daily for an additional 7 d. In Experiments 3 and 4, activities of constitutive and inducible NO synthases were measured in macrophages and various tissues from protein- or arginine-deficient rats (n = 6). Body weight was lower in rats fed the 5% casein diet or the 0.0 and 0.3% arginine diets than in those fed 20% casein or 1% arginine, respectively. Dietary protein or arginine deficiency decreased serum concentrations of arginine and urinary nitrate excretion before and after LPS treatment, indicating impaired constitutive and inducible NO synthesis. Protein malnutrition reduced constitutive and inducible NO synthase activities in brain, heart, jejunum, lung, skeletal muscle and spleen, and inducible NO synthase activity in macrophages. Because NO is a mediator of the immune response and is the endothelium-dependent relaxing factor, impaired NO synthesis may help explain immunodeficiency and cardiovascular dysfunction in protein- or arginine-deficient subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.