Because municipal solid waste (MSW) landfills emit significant amounts of methane, a potent greenhouse gas, there is considerable interest in quantifying surficial methane emissions from landfills. The authors present a method to estimate methane emissions, using ambient air volatile organic compound (VOC) measurements taken above the surface of the landfill. Using a hand-held monitor, hundreds of VOC concentrations can be taken easily in a day, and simple meteorological data can be recorded at the same time. The standard Gaussian dispersion equations are inverted and solved by matrix methods to determine the methane emission rates at hundreds of point locations throughout a MSW landfill. These point emission rates are then summed to give the total landfill emission rate. This method is tested on a central Florida MSW landfill using data from 3 different days, taken 6 and 12 months apart. A sensitivity study is conducted, and the emission estimates are most sensitive to the input meteorological parameters of wind speed and stability class. Because of the many measurements that are used, the results are robust. When the emission estimates were used as inputs into a dispersion model, a reasonable scatterplot fit of the individual concentration measurement data resulted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.