Summary A key component in controlling the spread of an epidemic is deciding where, when and to whom to apply an intervention. We develop a framework for using data to inform these decisions in realtime. We formalize a treatment allocation strategy as a sequence of functions, one per treatment period, that map up‐to‐date information on the spread of an infectious disease to a subset of locations where treatment should be allocated. An optimal allocation strategy optimizes some cumulative outcome, e.g. the number of uninfected locations, the geographic footprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategy for an emerging infectious disease is challenging because spatial proximity induces interference between locations, the number of possible allocations is exponential in the number of locations, and because disease dynamics and intervention effectiveness are unknown at outbreak. We derive a Bayesian on‐line estimator of the optimal allocation strategy that combines simulation–optimization with Thompson sampling. The estimator proposed performs favourably in simulation experiments. This work is motivated by and illustrated using data on the spread of white nose syndrome, which is a highly fatal infectious disease devastating bat populations in North America.
There is increasing interest in using streaming data to inform decision making across a wide range of application domains including mobile health, food safety, security, and resource management. A decision support system formalizes online decision making as a map from up-to-date information to a recommended decision. Online estimation of an optimal decision strategy from streaming data requires simultaneous estimation of components of the underlying system dynamics as well as the optimal decision strategy given these dynamics; thus, there is an inherent trade-off between choosing decisions that lead to improved estimates and choosing decisions that appear to be optimal based on current estimates. Thompson (1933) was among the first to formalize this trade-off in the context of choosing between two treatments for a stream of patients; he proposed a simple heuristic wherein a treatment is selected randomly at each time point with selection probability proportional to the posterior probability that it is optimal. We consider a variant of Thompson sampling that is simple to implement and can be applied to large and complex decision problems. We show that the proposed Thompson sampling estimator is consistent for the optimal decision support system and provide rates of convergence and finite sample error bounds. The proposed algorithm is illustrated using an agent-based model of the spread of influenza on a network and management of mallard populations in the United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.