Physiological needs bias perception and attention to relevant sensory cues. This process is ‘hijacked’ by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how ‘cognitive’ cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food- cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic ‘hunger neurons’ (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues.
Summary The decision to engage in food-seeking behavior depends not only on homeostatic signals related to energy balance [1] but also on the presence of competing motivational drives [2] and learned cues signaling food availability [3]. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARC) are critical for homeostatic feeding behavior. Selective ablation or silencing of AgRP neurons causes anorexia [4,6] while selective stimulation in fed mice promotes feeding and learned instrumental actions to obtain food rewards [5–8]. However, it remains unknown whether AgRP neuron stimulation is sufficient to drive food-seeking behavior in the continued presence of a competing motivational drive, such as threat avoidance, or whether it can drive discrimination between learned sensory cues associated with food rewards and other outcomes. Here, we trained mice to perform a sensory discrimination task involving appetitive and aversive visual cues. Food-restricted mice exhibited selective operant responding to food-predicting cues but largely failed to avoid cued shocks by moving onto a safety platform. The opposite was true following re-feeding. Strikingly, AgRP neuron photostimulation did not restore operant responding in fed mice when initiated within the threat-containing arena, but did when initiated in the home cage, prior to arena entry. These data suggest that the choice to pursue certain behaviors and not others (e.g. food seeking vs. shock avoidance) can depend on the temporal primacy of one motivational drive relative to the onset of a competing drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.