[ A coherent framework for multiscale signal and image processing ] T he dual-tree complex wavelet transform (CWT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. It achieves this with a redundancy factor of only 2 d for d-dimensional signals, which is substantially lower than the undecimated DWT. The multidimensional (M-D) dual-tree CWT is nonseparable but is based on a computationally efficient, separable filter bank (FB). This tutorial discusses the theory behind the dual-tree transform, shows how complex wavelets with good properties can be designed, and illustrates a range of applications in signal and image processing. We use the complex number symbol C in CWT to avoid confusion with the often-used acronym CWT for the (different) continuous wavelet transform. BACKGROUNDThis article aims to reach two different audiences. The first is the wavelet community, many members of which are unfamiliar with the utility, convenience, and unique properties of complex wavelets. The second is the broader class of signal processing folk who work with applications where the DWT has proven somewhat disappointing, such as those involving complex or modulat-
This paper describes a form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. This introduces limited redundancy (2 m : 1 for m-dimensional signals) and allows the transform to provide approximate shift invariance and directionally selective filters (properties lacking in the traditional wavelet transform) while preserving the usual properties of perfect reconstruction and computational efficiency with good well-balanced frequency responses. Here we analyze why the new transform can be designed to be shift invariant and describe how to estimate the accuracy of this approximation and design suitable filters to achieve this. We discuss two different variants of the new transform, based on odd/even and quarter-sample shift (Q-shift) filters, respectively. We then describe briefly how the dual tree may be extended for images and other multi-dimensional signals, and finally summarize a range of applications of the transform that take advantage of its unique properties.
We first review how wavelets may be used for multi-resolution image processing, describing the filter-bank implementation of the discrete wavelet transform (DWT) and how it may be extended via separable filtering for processing images and other multi-dimensional signals. We then show that the condition for inversion of the DWT (perfect reconstruction) forces many commonly used wavelets to be similar in shape, and that this shape produces severe shift dependence (variation of DWT coefficient energy at any given scale with shift of the input signal). It is also shown that separable filtering with the DWT prevents the transform from providing directionally selective filters for diagonal image features.Complex wavelets can provide both shift invariance and good directional selectivity, with only modest increases in signal redundancy and computation load. However, development of a complex wavelet transform (CWT) with perfect reconstruction and good filter characteristics has proved difficult until recently. We now propose the dual-tree CWT as a solution to this problem, yielding a transform with attractive properties for a range of signal and image processing applications, including motion estimation, denoising, texture analysis and synthesis, and object segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.