Meta‐analysis is increasingly used in ecology and evolutionary biology. Yet, in these fields this technique has an important limitation: phylogenetic non‐independence exists among taxa, violating the statistical assumptions underlying traditional meta‐analytic models. Recently, meta‐analytical techniques incorporating phylogenetic information have been developed to address this issue. However, no syntheses have evaluated how often including phylogenetic information changes meta‐analytic results. To address this gap, we built phylogenies for and re‐analysed 30 published meta‐analyses, comparing results for traditional vs. phylogenetic approaches and assessing which characteristics of phylogenies best explained changes in meta‐analytic results and relative model fit. Accounting for phylogeny significantly changed estimates of the overall pooled effect size in 47% of datasets for fixed‐effects analyses and 7% of datasets for random‐effects analyses. Accounting for phylogeny also changed whether those effect sizes were significantly different from zero in 23 and 40% of our datasets (for fixed‐ and random‐effects models, respectively). Across datasets, decreases in pooled effect size magnitudes after incorporating phylogenetic information were associated with larger phylogenies and those with stronger phylogenetic signal. We conclude that incorporating phylogenetic information in ecological meta‐analyses is important, and we provide practical recommendations for doing so.
Summary1. Interannual variation in seasonal weather patterns causes shifts in the relative timing of phenological events of species within communities, but we currently lack a mechanistic understanding of how these phenological shifts affect species interactions. Identifying these mechanisms is critical to predicting how interannual variation affects populations and communities. 2. Species' phenologies, particularly the timing of offspring arrival, play an important role in the annual cycles of community assembly. We hypothesize that shifts in relative arrival of offspring can alter interspecific interactions through a mechanism called size-mediated priority effects (SMPE), in which individuals that arrive earlier can grow to achieve a body size advantage over those that arrive later. 3. In this study, we used an experimental approach to isolate and quantify the importance of SMPE for species interactions. Specifically, we simulated shifts in relative arrival of the nymphs of two dragonfly species to determine the consequences for their interactions as intraguild predators. 4. We found that shifts in relative arrival altered not only predation strength but also the nature of predator-prey interactions. When arrival differences were great, SMPE allowed the early arriver to prey intensely upon the late arriver, causing exclusion of the late arriver from nearly all habitats. As arrival differences decreased, the early arriver's size advantage also decreased. When arrival differences were smallest, there was mutual predation, and the two species coexisted in similar abundances across habitats. Importantly, we also found a nonlinear scaling relationship between shifts in relative arrival and predation strength. Specifically, small shifts in relative arrival caused large changes in predation strength while subsequent changes had relatively minor effects.5. These results demonstrate that SMPE can alter not only the outcome of interactions but also the demographic rates of species and the structure of communities. Elucidating the mechanisms that link phenological shifts to species interactions is crucial for understanding the dynamics of seasonal communities as well as for predicting the effects of climate change on these communities.
Abstract. A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages.We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because functional roles are dynamic and will change with shifts in the stage structure of the species. In general this emphasizes the importance of accounting for functional diversity below the species level to predict how natural and anthropogenic changes alter the functioning of natural ecosystems.
Linking the structure of communities to ecosystem functioning has been a perennial challenge in ecology. Studies on ecosystem function are traditionally focused on changes in species composition. However, this species-centric approach neglects the often dramatic changes in the ecology of organisms during their development, thereby limiting our ability to link the structure of populations and communities to the functioning of natural ecosystems. Here we experimentally demonstrate that the impact of organisms on community structure and ecosystem processes often differ more among developmental stages within a species than between species, contrary to current assumptions. Importantly, we show that functional differences between species vary depending on the specific demographic structure of predators. One important implication is that changes in the demography of populations can strongly alter the functional composition of communities and change ecosystem processes long before any species are extirpated from communities.
Efforts to characterize food webs have generated two influential approaches that reduce the complexity of natural communities. The traditional approach groups individuals based on their species identity, while recently developed approaches group individuals based on their body size. While each approach has provided important insights, they have largely been used in parallel in different systems. Consequently, it remains unclear how body size and species identity interact, hampering our ability to develop a more holistic framework that integrates both approaches. We address this conceptual gap by developing a framework which describes how both approaches are related to each other, revealing that both approaches share common but untested assumptions about how variation across size classes or species influences differences in ecological interactions among consumers. Using freshwater mesocosms with dragonfly larvae as predators, we then experimentally demonstrate that while body size strongly determined how predators affected communities, these size effects were species specific and frequently nonlinear, violating a key assumption underlying both size-and species-based approaches. Consequently, neither purely species-nor size-based approaches were adequate to predict functional differences among predators. Instead, functional differences emerged from the synergistic effects of body size and species identity. This clearly demonstrates the need to integrate size-and species-based approaches to predict functional diversity within communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.