Abstract-Memory corruption vulnerabilities are an everpresent risk in software, which attackers can exploit to obtain unauthorized access to confidential information. As products with access to sensitive data are becoming more prevalent, the number of potentially exploitable systems is also increasing, resulting in a greater need for automated software vetting tools. DARPA recently funded a competition, with millions of dollars in prize money, to further research focusing on automated vulnerability finding and patching, showing the importance of research in this area. Current techniques for finding potential bugs include static, dynamic, and concolic analysis systems, which each having their own advantages and disadvantages. A common limitation of systems designed to create inputs which trigger vulnerabilities is that they only find shallow bugs and struggle to exercise deeper paths in executables.We present Driller, a hybrid vulnerability excavation tool which leverages fuzzing and selective concolic execution in a complementary manner, to find deeper bugs. Inexpensive fuzzing is used to exercise compartments of an application, while concolic execution is used to generate inputs which satisfy the complex checks separating the compartments. By combining the strengths of the two techniques, we mitigate their weaknesses, avoiding the path explosion inherent in concolic analysis and the incompleteness of fuzzing. Driller uses selective concolic execution to explore only the paths deemed interesting by the fuzzer and to generate inputs for conditions that the fuzzer cannot satisfy. We evaluate Driller on 126 applications released in the qualifying event of the DARPA Cyber Grand Challenge and show its efficacy by identifying the same number of vulnerabilities, in the same time, as the top-scoring team of the qualifying event.
Finding and exploiting vulnerabilities in binary code is a challenging task. The lack of high-level, semantically rich information about data structures and control constructs makes the analysis of program properties harder to scale. However, the importance of binary analysis is on the rise. In many situations binary analysis is the only possible way to prove (or disprove) properties about the code that is actually executed. In this paper, we present a binary analysis framework that implements a number of analysis techniques that have been proposed in the past. We present a systematized implementation of these techniques, which allows other researchers to compose them and develop new approaches. In addition, the implementation of these techniques in a unifying framework allows for the direct comparison of these approaches and the identification of their advantages and disadvantages. The evaluation included in this paper is performed using a recent dataset created by DARPA for evaluating the effectiveness of binary vulnerability analysis techniques. Our framework has been open-sourced and is available to the security community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.