Tradescantia fluminensis is an invasive plant species in New Zealand, Australia and parts of the USA. It reproduces vegetatively and can grow to form dense mats up to 60 cm deep. Growth is limited by available light, and shading is one of the few effective methods of control. In this paper, we develop a dynamic model of a vertical cross section of a T. fluminensis mat, capturing vertical variation in its biomass and internal light intensity. We measure both variables at different heights in experimental mats of the species and use these data to parameterize the model. The model produces realistic vertical biomass and light intensity profiles. We show that the mat grows to a steady-state biomass that depends only on: (i) the light absorption coefficient, which we estimate from experimental data and (ii) the ratio of photosynthesis to respiration rate. This steady state undergoes a transcritical bifurcation; when the ambient light intensity falls below a critical level, the biomass shrinks to zero and the mat cannot survive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.