There has been growing attention on the effect of COVID‐19 on white‐matter microstructure, especially among those that self‐isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single‐shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single‐shell‐compatible diffusion MRI modeling methods are compared for detecting the effect of COVID‐19, including diffusion‐tensor imaging, diffusion‐tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self‐isolated patients at the study initiation and 3‐month follow‐up, along with age‐ and sex‐matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single‐shell methods to demonstrate COVID‐19‐related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID‐19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID‐19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID‐19 related white‐matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b‐values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3‐month follow‐up, likely due to the limited size of the follow‐up cohort. To summarize, correlated diffusion imaging is shown to be a viable single‐shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID‐19 patients, suggesting the two regions react differently to viral infection.
There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion MRI methods for detecting such effects. In this work, the sensitivities of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at baseline and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients. Results also demonstrate, for the first time, more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. Whereas correlated diffusion imaging can be successfully applied using single-shell diffusion data, different b-values also confer different sensitivities to these two opposing effects. No significant difference was observed in patients at the 3-month follow-up. To summarize, correlated diffusion imaging is shown to be a sensitive single-shell diffusion analysis approach that allowed us to uncovered opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.
The impact of COVID19 on the brain’s microstructural integrity remains unclear. In this study, we examine self-isolated COVID19 patients and controls using diffusion-tensor and free-water imaging, based on single- and multi-shell acquisitions, respectively. We identify several differences in spatial covariance among patients in fractional anisotropy (in cingulate-frontal and temporal-parietal regions), but not free water fraction. Our results indicate COVID19’s implications in long-term, measurable brain deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.