Molybdenum disulfide (MoS2) flakes can grow beyond the edge of an underlying substrate into a planar freestanding crystal. When the substrate edge is in the form of an aperture, reagent-limited nucleation followed by edge growth facilitate direct and selective growth of freestanding MoS2 membranes. We have found conditions under which MoS2 grows preferentially across micrometer-scale prefabricated solid-state apertures in silicon nitride membranes, resulting in sealed membranes that are one to a few atomic layers thick. We have investigated the structure and purity of our membranes by a combination of atomic-resolution transmission electron microscopy, elemental analysis, Raman spectroscopy, photoluminescence spectroscopy, and low-noise ion-current recordings through nanopores fabricated in such membranes. Finally, we demonstrate the utility of fabricated ultrathin nanopores in such membranes for single-stranded DNA translocation detection.
Two-dimensional (2D) materials are being actively researched due to their exotic electronic and optical properties, including a layer-dependent bandgap, a strong exciton binding energy, and a direct optical access to electron valley index in momentum space. Recently, it was discovered that 2D materials with bandgaps could host quantum emitters with exceptional brightness, spectral tunability, and, in some cases, also spin properties. This review considers the recent progress in the experimental and theoretical understanding of these localized defect-like emitters in a variety of 2D materials as well as the future advantages and challenges on the path toward practical applications.
Monolayer transition metal dichalcogenides (TMDCs) have recently emerged as a host material for localized optically active quantum emitters that generate single photons. (1-5) Here, we investigate fully localized excitons and trions from such TMDC quantum emitters embedded in a van der Waals heterostructure. We use direct electrostatic doping through the vertical heterostructure device assembly to generate quantum confined trions. Distinct spectral jumps as a function of applied voltage bias, and excitation power-dependent charging, demonstrate the observation of the two different excitonic complexes. We also observe a reduction of the intervalley electron-hole exchange interaction in the confined trion due to the addition of an extra electron, which is manifested by a decrease in its fine structure splitting. We further confirm this decrease of exchange interaction for the case of the charged states by a comparative study of the circular polarization resolved photoluminescence from individual excitonic states. The valley polarization selection rules inherited by the localized trions will provide a pathway toward realizing a localized spin-valley-photon interface.
We show that the positioning of a nanometer length scale dielectric object, such as a diamond nanocrystal, in the vicinity of a gold bowtie nanoantenna can be used to tune the plasmonic mode spectrum on the order of a linewidth. We further show that the intrinsic luminescence of gold enhanced in the presence of nanometer-scale roughness couples efficiently to the plasmon mode and carries the same polarization anisotropy. Our findings have direct implications for cavity quantum electrodynamics related applications of hybrid antenna-emitter complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.