Micro-controllers such as Arduino are widely used by all kinds of makers worldwide. Popularity has been driven by Arduino's simplicity of use and the large number of sensors and libraries available to extend the basic capabilities of these controllers. The last decade has witnessed a surge of software engineering solutions for "the Internet of Things", but in several cases these solutions require computational resources that are more advanced than simple, resource-limited micro-controllers.Surprisingly, in spite of being the basic ingredients of complex hardware-software systems, there does not seem to be a simple and flexible way to (1) extend the basic capabilities of micro-controllers, and (2) to coordinate inter-connected micro-controllers in "the Internet of Things". Indeed, new capabilities are added on a per-application basis and interactions are mainly limited to bespoke, point-to-point protocols that target the hardware I/O rather than the services provided by this hardware.In this paper we present the Arduino Service Interface Programming (ASIP) model, a new model that addresses the issues above by (1) providing a "Service" abstraction to easily add new capabilities to micro-controllers, and (2) providing support for networked boards using a range of strategies, including socket connections, bridging devices, MQTT-based publish-subscribe messaging, discovery services, etc. We provide an open-source implementation of the code running on Arduino boards and client libraries in Java, Python, Racket and Erlang. We show how ASIP enables the rapid development of non-trivial applications (coordination of input/output on distributed boards and implementation of a line-following algorithm for a remote robot) and we assess the performance of ASIP in several ways, both quantitative and qualitative.
In this project we explore how to enhance the experience and understanding of cultural heritage in museums and heritage sites by creating interactive multisensory objects collaboratively with artists, technologists and people with learning disabilities. We focus here on workshops conducted during the first year of a three year project in which people with learning disabilities each constructed a 'sensory box' to represent their experiences of Speke Hall, a heritage site in the UK. The box is developed further in later workshops which explore aspects of physicality and how to appeal to the entire range of senses, making use of Arduino technology and basic sensors to enable an interactive user experience.
This paper describes a project that aims to help improve the accessibility of museums and heritage sites by creating a series of interactive, multisensory objects. The objects will be developed collaboratively by artists, technologists, people with an interest in heritage sites, and people with disabilities and their carers in a series of sensory art and electronics workshops. The workshops and the sensory objects will explore aspects of physicality and how to appeal to the entire range of senses for both control and feedback. In addition to creating new interactive objects, the project aims to learn more about how to engage people with disabilities as participant researchers in designing art objects, and how to make heritage sites more accessible generally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.