Nanofibrous materials have become an important component in the field of regenerative medicine. Due to their resemblance with extracellular matrix proteins, nanofibrous materials are capable of eliciting natural cell behaviors. One class of self-assembling molecules that forms nanofibers is peptide amphiphiles (PAs). The modularity of self-assembly affords the ability to tailor PA assemblies for specific applications through molecular design and mixing of different components. Illustrated here is an extended-micelle-forming PA synthesized in a branched architecture composed of histidine and serine amino acids conjugated to a palmitoyl tail. Using histidine residues as molecular switches, PA solutions are capable of transitioning from viscoelastic liquids in mildly acidic conditions to selfsupporting hydrogels above pH 6.5. By modulating the concentration of the PAs, biocompatible hydrogels of 0.2-10 kPa were achieved. This PA hydrogel system is a potential candidate as an injectable three-dimensional tissue scaffold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.