Objective To assess collagen and α-tubulin levels of mouse tympanic membrane fibroblasts treated with quinolone and aminoglycoside antibiotics at concentrations found in eardrops. Study Design Prospective controlled cell culture study. Setting Academic tertiary medical center. Subjects Mouse tympanic membrane fibroblasts. Methods In experiment 1, fibroblasts were treated with the following for 24 or 48 hours: phosphate-buffered saline (negative control), dilute hydrochloric acid (positive control), 0.5% gatifloxacin, or commercially available 0.3% ciprofloxacin, 0.3% ciprofloxacin + 0.1% dexamethasone, 0.3% ofloxacin, 0.5% moxifloxacin, 0.3% gentamicin, or 3.5 mg/mL of neomycin + polymyxin B sulfate + hydrocortisone. In experiment 2, cells were treated with the pure form of gatifloxacin, gentamicin, ofloxacin, or ciprofloxacin. Cells were observed with phase-contrast microscope until harvested. Proteins were extracted for Western blotting with antibodies against collagen α1 type I (collagen 1A1) and α-tubulin, and for densitometry to quantify levels. Results Collagen and tubulin levels in fibroblasts treated with ofloxacin, moxifloxacin, gatifloxacin, or gentamicin for 24 hours were not different from the saline control. Fibroblasts treated with neomycin + polymyxin B + hydrocortisone, ciprofloxacin + dexamethasone, or ciprofloxacin for 24 hours had lower collagen 1A1 and α-tubulin levels (all P < .001) than the negative control. After 48 hours, fibroblasts treated with neomycin + polymyxin B sulfate + hydrocortisone, ciprofloxacin + dexamethasone, ciprofloxacin, or moxifloxacin had lower collagen 1A1 ( P ≤ .007) and α-tubulin ( P < .0001; except ciprofloxacin, P = .033) as compared with control. In experiment 2, only cells treated with ciprofloxacin had lower collagen 1A1 and α-tubulin levels and cell viability (all P < .0001) than control. Cytotoxicity assay and phase-contrast images mirrored the protein findings. Conclusion The adverse impact of topical antibiotic exposure on tympanic membrane collagen and tubulin protein levels is drug specific. This may be important for selection of ototopical therapy.