The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.Electronic supplementary materialThe online version of this article (10.1007/s00401-018-1859-2) contains supplementary material, which is available to authorized users.
Metformin is currently the first-line treatment drug for type 2 diabetes. Metformin is a well-known activator of AMP-activated protein kinase (AMPK). In experimental studies, metformin has been shown to exert direct vascular effects by increasing vascular endothelial growth factor expression and improving microvascular density. As stroke is the leading cause of long-term disability and angiogenesis is implicated as an important mechanism in functional recovery, we hypothesized that chronic metformin treatment would improve post-stroke functional recovery by enhancing functional microvascular density. For this study, C57BL/6N male mice were subjected to a 60-min middle cerebral artery occlusion, and were given 50 mg/kg/day metformin beginning 24 h post-stroke for 3 weeks. Behavioral recovery was assessed using adhesive-tape removal and the apomorphine-induced turning test. The role of angiogenesis was assessed by counting vessel branch points from fluorescein-conjugated lectin-perfused brain sections. Importantly even if metformin treatment was initiated 24 h after injury it enhanced recovery and significantly improved stroke-induced behavioral deficits. This recovery occurred in parallel with enhanced angiogenesis and with restoration of endogenous cerebral dopaminergic tone and revascularization of ischemic tissue. We assessed if the effects on recovery and angiogenesis were mediated by AMPK. When tested in AMPK α-2 knockout mice, we found that metformin treatment did not have the same beneficial effects on recovery and angiogenesis, suggesting that metformin-induced angiogenic effects are mediated by AMPK. The results from this study suggest that metformin mediates post-stroke recovery by enhancing angiogenesis, and these effects are mediated by AMPK signaling.
Background Low levels of brain-derived neurotrophic factor (BDNF) are linked to delayed neurological recovery, depression, and cognitive impairment following stroke. Supplementation with BDNF reverses these effects. Unfortunately, systemically administered BDNF in its native form has minimal therapeutic value due to its poor blood brain barrier permeability and short serum half-life. In this study, a novel nano-particle polyion complex formulation of BDNF (nano-BDNF) was administered to mice after experimental ischemic stroke. Methods Male C57BL/6J (8–10 weeks) mice were randomly assigned to receive nano-BDNF, native-BDNF, or saline treatment after being subjected to 60 minutes of reversible middle cerebral artery occlusion (MCAo). Mice received the first dose at 3 (early treatment), 6 (intermediate treatment), or 12 hours (delayed treatment) following stroke onset; a second dose was given in all cohorts at 24 hours after stroke onset. Post-stroke outcome was evaluated by behavioral, histological, and molecular analysis for 15 days after stroke. Results Early and intermediate nano-BDNF treatment led to a significant reduction in cerebral tissue loss. Delayed treatment led to improved memory/cognition, reduced post-stroke depressive phenotypes, and maintained myelin basic protein and brain BDNF levels, but had no effect on tissue atrophy. Conclusions The results indicate that administration of a novel nano-particle formulation of BDNF leads to both neuroprotective and neuro-restorative effects after stroke.
Background Ischemic stroke results in a robust inflammatory response within the central nervous system. As the immune-inhibitory CD200-CD200 receptor 1 (CD200R1) signaling axis is a known regulator of immune homeostasis, we hypothesized that it may play a role in post-stroke immune suppression after stroke. Methods In this study, we investigated the role of CD200R1-mediated signaling in stroke using CD200 receptor 1-deficient mice. Mice were subjected to a 60-min middle cerebral artery occlusion and evaluated at days 3 and 7, representing the respective peak and early resolution stages of neuroinflammation in this model of ischemic stroke. Infarct size and behavioral deficits were assessed at both time points. Central and peripheral cellular immune responses were measured using flow cytometry. Bacterial colonization was determined in lung tissue homogenates both after acute stroke and in an LPS model of systemic inflammation. Results In wild-type (WT) animals, CD200R1 was expressed on infiltrating monocytes and lymphocytes after stroke but was absent on microglia. Early after ischemia (72 h), CD200R1-knockout (KO) mice had significantly poorer survival rates and an enhanced susceptibility to spontaneous bacterial colonization of the respiratory tract compared to wild-type (WT) controls, despite no difference in infarct or neurological deficits. While the CNS inflammation was resolved by day 7 post-stroke in WT mice, brain-resident microglia and monocyte activation persisted in CD200R1-KO mice, accompanied by a delayed, augmented lymphocyte response. At this time point, CD200R1-KO mice displayed greater weight loss, more severe neurological deficits, and impaired motor function compared to WT. Systemically, CD200R1-KO mice exhibited signs of persistent infection including lymphopenia, T cell activation and memory conversion, and narrowing of the TCR repertoire. These findings were confirmed in a second model of acute neuroinflammation induced by systemic endotoxin challenge. Conclusion This study defines an essential role of CD200-CD200R1 signaling in stroke. Loss of CD200R1 led to high mortality, increased rates of post-stroke infection, and enhanced entry of peripheral leukocytes into the brain after ischemia, with no increase in infarct size. This suggests that the loss of CD200 receptor leads to enhanced peripheral inflammation that is triggered by brain injury. Electronic supplementary material The online version of this article (10.1186/s12974-019-1426-3) contains supplementary material, which is available to authorized users.
In adolescent patients with ACL or meniscal tears, patients with public insurance had a more delayed presentation than those with private insurance. They also tended to have more moderate-to-severe chondral injuries and meniscal tears, if present, that required debridement rather than repair. More rapid access to care might improve the prognosis of young patients with ACL and meniscal injuries with public insurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.