Background: Studies emphasize the importance of particulate matter (PM) in the formation of reactive oxygen species and inflammation. We hypothesized that these processes can influence mitochondrial function of the placenta and fetus.Objective: We investigated the influence of PM10 exposure during pregnancy on the mitochondrial DNA content (mtDNA content) of the placenta and umbilical cord blood.Methods: DNA was extracted from placental tissue (n = 174) and umbilical cord leukocytes (n = 176). Relative mtDNA copy numbers (i.e., mtDNA content) were determined by real-time polymerase chain reaction. Multiple regression models were used to link mtDNA content and in utero exposure to PM10 over various time windows during pregnancy.Results: In multivariate-adjusted analysis, a 10-µg/m³ increase in PM10 exposure during the last month of pregnancy was associated with a 16.1% decrease [95% confidence interval (CI): –25.2, –6.0%, p = 0.003] in placental mtDNA content. The corresponding effect size for average PM10 exposure during the third trimester was 17.4% (95% CI: –31.8, –0.1%, p = 0.05). Furthermore, we found that each doubling in residential distance to major roads was associated with an increase in placental mtDNA content of 4.0% (95% CI: 0.4, 7.8%, p = 0.03). No association was found between cord blood mtDNA content and PM10 exposure.Conclusions: Prenatal PM10 exposure was associated with placental mitochondrial alterations, which may both reflect and intensify oxidative stress production. The potential health consequences of decreased placental mtDNA content in early life must be further elucidated.
BackgroundThere is evidence that altered DNA methylation is an important epigenetic mechanism in prenatal programming and that developmental periods are sensitive to environmental stressors. We hypothesized that exposure to fine particles (PM2.5) during pregnancy could influence DNA methylation patterns of the placenta.MethodsIn the ENVIRONAGE birth cohort, levels of 5’-methyl-deoxycytidine (5-mdC) and deoxycytidine (dC) were quantified in placental DNA from 240 newborns. Multiple regression models were used to study placental global DNA methylation and in utero exposure to PM2.5 over various time windows during pregnancy.ResultsPM2.5 exposure during pregnancy averaged (25th-75th percentile) 17.4 (15.4-19.3) μg/m3. Placental global DNA methylation was inversely associated with PM2.5 exposures during whole pregnancy and relatively decreased by 2.19% (95% confidence interval [CI]: -3.65, -0.73%, p = 0.004) for each 5 μg/m3 increase in exposure to PM2.5. In a multi-lag model in which all three trimester exposures were fitted as independent variables in the same regression model, only exposure to PM2.5 during trimester 1 was significantly associated with lower global DNA methylation (-2.13% per 5 μg/m3 increase, 95% CI: -3.71, -0.54%, p = 0.009). When we analyzed shorter time windows of exposure within trimester 1, we observed a lower placental DNA methylation at birth during all implantation stages but exposure during the implantation range (6-21d) was strongest associated (-1.08% per 5 μg/m3 increase, 95% CI: -1.80, -0.36%, p = 0.004).ConclusionsWe observed a lower degree of placental global DNA methylation in association with exposure to particulate air pollution in early pregnancy, including the critical stages of implantation. Future studies should elucidate genome-wide and gene-specific methylation patterns in placental tissue that could link particulate exposure during in utero life and early epigenetic modulations.
ObjectiveStudies on the association between short-term exposure to ambient air pollution and heart rate variability (HRV) suggest that particulate matter (PM) exposure is associated with reductions in measures of HRV, but there is heterogeneity in the nature and magnitude of this association between studies. The authors performed a meta-analysis to determine how consistent this association is.Data sourceThe authors searched the Pubmed citation database and Web of Knowledge to identify studies on HRV and PM.Study selectionOf the epidemiologic studies reviewed, 29 provided sufficient details to be considered. The meta-analysis included 18667 subjects recruited from the population in surveys, studies from patient groups, and from occupationally exposed groups.Data extractionTwo investigators read all papers and computerised all relevant information.ResultsThe authors computed pooled estimates from a random-effects model. In the combined studies, an increase of 10 μg/m3 in PM2.5 was associated with significant reductions in the time-domain measurements, including low frequency (−1.66%, 95% CI −2.58% to −0.74%) and high frequency (−2.44%, 95% CI −3.76% to −1.12%) and in frequency-domain measurements, for SDNN (−0.12%, 95% CI −0.22% to −0.03%) and for rMSSD (−2.18%, 95% CI −3.33% to −1.03%). Funnel plots suggested that no publication bias was present and a sensitivity analysis confirmed the robustness of our combined estimates.ConclusionThe meta-analysis supports an inverse relationship between HRV, a marker for a worse cardiovascular prognosis, and particulate air pollution.
Background:Mitochondria are sensitive to environmental toxicants due to their lack of repair capacity. Changes in mitochondrial DNA (mtDNA) content may represent a biologically relevant intermediate outcome in mechanisms linking air pollution and fetal growth restriction.Objective:We investigated whether placental mtDNA content is a possible mediator of the association between prenatal nitrogen dioxide (NO2) exposure and birth weight.Methods:We used data from two independent European cohorts: INMA (n = 376; Spain) and ENVIRONAGE (n = 550; Belgium). Relative placental mtDNA content was determined as the ratio of two mitochondrial genes (MT-ND1 and MTF3212/R3319) to two control genes (RPLP0 and ACTB). Effect estimates for individual cohorts and the pooled data set were calculated using multiple linear regression and mixed models. We also performed a mediation analysis.Results:Pooled estimates indicated that a 10-μg/m3 increment in average NO2 exposure during pregnancy was associated with a 4.9% decrease in placental mtDNA content (95% CI: –9.3, –0.3%) and a 48-g decrease (95% CI: –87, –9 g) in birth weight. However, the association with birth weight was significant for INMA (–66 g; 95% CI: –111, –23 g) but not for ENVIRONAGE (–20 g; 95% CI: –101, 62 g). Placental mtDNA content was associated with significantly higher mean birth weight (pooled analysis, interquartile range increase: 140 g; 95% CI: 43, 237 g). Mediation analysis estimates, which were derived for the INMA cohort only, suggested that 10% (95% CI: 6.6, 13.0 g) of the association between prenatal NO2 and birth weight was mediated by changes in placental mtDNA content.Conclusion:Our results suggest that mtDNA content can be one of the potential mediators of the association between prenatal air pollution exposure and birth weight.Citation:Clemente DB, Casas M, Vilahur N, Begiristain H, Bustamante M, Carsin AE, Fernández MF, Fierens F, Gyselaers W, Iñiguez C, Janssen BG, Lefebvre W, Llop S, Olea N, Pedersen M, Pieters N, Santa Marina L, Souto A, Tardón A, Vanpoucke C, Vrijheid M, Sunyer J, Nawrot TS. 2016. Prenatal ambient air pollution, placental mitochondrial DNA content, and birth weight in the INMA (Spain) and ENVIRONAGE (Belgium) birth cohorts. Environ Health Perspect 124:659–665; http://dx.doi.org/10.1289/ehp.1408981
Background:Telomere length and mitochondrial DNA (mtDNA) content are markers of aging and aging-related diseases. There is inconclusive evidence concerning the mechanistic effects of airborne particulate matter (PM) exposure on biomolecular markers of aging.Objective:The present study examines the association between short- and long-term PM exposure with telomere length and mtDNA content in the elderly and investigates to what extent this association is mediated by expression of genes playing a role in the telomere–mitochondrial axis of aging.Methods:Among 166 nonsmoking elderly participants, we used qPCR to measure telomere length and mtDNA content in leukocytes and RNA from whole blood to measure expression of SIRT1, TP53, PPARGC1A, PPARGC1B, NRF1, and NFE2L2. Associations between PM exposure and markers of aging were estimated using multivariable linear regression models adjusted for sex, age, BMI, socioeconomic status, statin use, past smoking status, white blood cell count, and percentage of neutrophils. Mediation analysis was performed to explore the role of age-related markers between the association of PM exposure and outcome. Annual PM2.5 exposure was calculated for each participant’s home address using a high-resolution spatial–temporal interpolation model.Results:Annual PM2.5 concentrations ranged from 15 to 23 μg/m3. A 5-μg/m3 increment in annual PM2.5 concentration was associated with a relative decrease of 16.8% (95% CI: –26.0%, –7.4%, p = 0.0005) in telomere length and a relative decrease of 25.7% (95% CI: –35.2%, –16.2%, p < 0.0001) in mtDNA content. Assuming causality, results of the mediation analysis indicated that SIRT1 mediated 19.5% and 22.5% of the estimated effect of PM2.5 exposure on telomere length and mtDNA content, respectively.Conclusions:Our findings suggest that the estimated effects of PM2.5 exposure on the telomere–mitochondrial axis of aging may play an important role in chronic health effects of PM2.5.Citation:Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, Smeets K, Vanpoucke C, Plusquin M, Nawrot TS. 2016. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect 124:943–950; http://dx.doi.org/10.1289/ehp.1509728
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.