Many emerging applications of nano-sized unmanned aerial vehicles (UAVs), with a few cm 2 form-factor, revolve around safely interacting with humans in complex scenarios, for example, monitoring their activities or looking after people needing care. Such sophisticated autonomous functionality must be achieved while dealing with severe constraints in payload, battery, and power budget (∼100 mW). In this work, we attack a complex task going from perception to control: to estimate and maintain the nano-UAV's relative 3D pose with respect to a person while they freely move in the environment -a task that, to the best of our knowledge, has never previously been targeted with fully onboard computation on a nano-sized UAV. Our approach is centered around a novel vision-based deep neural network (DNN), called PULP-Frontnet, designed for deployment on top of a parallel ultra-low-power (PULP) processor aboard a nano-UAV. We present a vertically integrated approach starting from the DNN model design, training, and dataset augmentation down to 8-bit quantization and deployment in-field. PULP-Frontnet can operate in real-time (up to 135 frame/s), consuming less than 87 mW for processing at peak throughput and down to 0.43 mJ/frame in the most energy-efficient operating point. Field experiments demonstrate a closed-loop top-notch autonomous navigation capability, with a tiny 27-grams Crazyflie 2.1 nano-UAV. Compared against an ideal sensing setup, onboard pose inference yields excellent drone behavior in terms of median absolute errors, such as positional (onboard: 41 cm, ideal: 26 cm) and angular (onboard: 3.7 • , ideal: 4.1 • ). We publicly release videos and the source code of our work.
Artificial intelligence-powered pocket-sized air robots have the potential to revolutionize the Internet-of-Things ecosystem, acting as autonomous, unobtrusive, and ubiquitous smart sensors. With a few cm 2 form-factor, nano-sized unmanned aerial vehicles (UAVs) are the natural befit for indoor humandrone interaction missions, as the pose estimation task we address in this work. However, this scenario is challenged by the nano-UAVs' limited payload and computational power that severely relegates the onboard brain to the sub-100 mW microcontroller unit-class. Our work stands at the intersection of the novel parallel ultra-low-power (PULP) architectural paradigm and our general development methodology for deep neural network (DNN) visual pipelines, i.e., covering from perception to control. Addressing the DNN model design, from training and dataset augmentation to 8-bit quantization and deployment, we demonstrate how a PULP-based processor, aboard a nano-UAV, is sufficient for the real-time execution (up to 135 frame/s) of our novel DNN, called PULP-Frontnet. We showcase how, scaling our model's memory and computational requirement, we can significantly improve the onboard inference (top energy efficiency of 0.43 mJ/frame) with no compromise in the quality-of-result vs. a resource-unconstrained baseline (i.e., full-precision DNN). Field experiments demonstrate a closed-loop top-notch autonomous navigation capability, with a heavily resource-constrained 27grams Crazyflie 2.1 nano-quadrotor. Compared against the control performance achieved using an ideal sensing setup, onboard relative pose inference yields excellent drone behavior in terms of median absolute errors, such as positional (onboard: 41 cm, ideal: 26 cm) and angular (onboard: 3.7°, ideal: 4.1°).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.