Existence of solutions of weakly non-linear half-space problems for the general discrete velocity (with arbitrarily finite number of velocities) model of the Boltzmann equation are studied. The solutions are assumed to tend to an assigned Maxwellian at infinity, and the data for the outgoing particles at the boundary are assigned, possibly linearly depending on the data for the incoming particles. The conditions, on the data at the boundary, needed for the existence of a unique (in a neighborhood of the assigned Maxwellian) solution of the problem are investigated. In the non-degenerate case (corresponding, in the continuous case, to the case when the Mach number at infinity is different of -1, 0 and 1) implicit conditions are found. Furthermore, under certain assumptions explicit conditions are found, both in the non-degenerate and degenerate cases. Applications to axially symmetric models are studied in more detail.
We study typical half-space problems of rarefied gas dynamics, including the problems of Milne and Kramer, for a general discrete model of a quantum kinetic equation for excitations in a Bose gas. In the discrete case the plane stationary quantum kinetic equation reduces to a system of ordinary differential equations. These systems are studied close to equilibrium and are proved to have the same structure as corresponding systems for the discrete Boltzmann equation. Then a classification of well-posed half-space problems for the homogeneous, as well as the inhomogeneous, linearized discrete kinetic equation can be made. The number of additional conditions that need to be imposed for well-posedness is given by some characteristic numbers. These characteristic numbers are calculated for discrete models axially symmetric with respect to the x-axis. When the characteristic numbers change is found in the discrete as well as the continuous case. As an illustration explicit solutions are found for a small-sized model.Keywords Bose-Einstein condensate · Low temperature kinetics · Discrete kinetic equation · Milne problem · Kramer problem IntroductionHalf-space problems have an important role in the study of the asymptotic behavior of the solutions of boundary value problems of kinetic equations for small Knudsen numbers [4,15,16,26,27]. In this paper we study half-space problems related to a quantum kinetic equation [23,33], for the distribution function of excited atoms interacting with a Bose-Einstein condensate. Motivated by the work
PostprintThis is the accepted version of a paper published in . This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.Citation for the original published paper (version of record):Bernhoff, N., Bobylev, A. (2007) Weak shock waves for the general discrete velocity model of the Boltzmann equation. Abstract. We study the shock wave problem for the general discrete velocity model (DVM), with an arbitrary finite number of velocities. In this case the discrete Boltzmann equation becomes a system of ordinary differential equations (dynamical system). Then the shock waves can be seen as heteroclinic orbits connecting two singular points (Maxwellians). In this paper we give a constructive proof for the existence of solutions in the case of weak shocks. Communications in Mathematical SciencesWe assume that a given Maxwellian is approached at infinity, and consider shock speeds close to a typical speed, corresponding to the sound speed in the continuous case. The existence of a non-negative locally unique (up to a shift in the independent variable) bounded solution is proved by using contraction mapping arguments (after a suitable decomposition of the system). This solution is shown to tend to a Maxwellian at minus infinity.Existence of weak shock wave solutions for DVMs was proved by Bose, Illner and Ukai in 1998. In this paper, we give a constructive proof following a more straightforward way, suiting the discrete case. Our approach is based on earlier results by the authors on the main characteristics (dimensions of corresponding stable, unstable and center manifolds) for singular points to general dynamical systems of the same type as in the shock wave problem for DVMs.The same approach can also be applied for DVMs for mixtures.
An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that DVMs can also have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. For binary mixtures also the concept of supernormal DVMs was introduced, meaning that in addition to the DVM being normal, the restriction of the DVM to any single species also is normal. Here we introduce generalizations of this concept to DVMs for multicomponent mixtures. We also present some general algorithms for constructing such models and give some concrete examples of such constructions. One of our main results is that for any given number of species, and any given rational mass ratios we can construct a supernormal DVM. The DVMs are constructed in such a way that for half-space problems, as the Milne and Kramers problems, but also nonlinear ones, we obtain similar structures as for the classical discrete Boltzmann equation for one species, and therefore we can apply obtained results for the classical Boltzmann equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.