BACKGROUND: Unprecedented demand for N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic has led to a global shortage of these masks. We validated a rapidly applicable, lowcost decontamination protocol in compliance with regulatory standards to enable the safe reuse of N95 respirators. METHODS:We inoculated 4 common models of N95 respirators with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and evaluated viral inacti vation after disinfection for 60 minutes at 70°C and 0% relative humidity. Similarly, we evaluated thermal disinfection at 0% to 70% relative humidity for masks inoculated with Escherichia coli. We assessed masks subjected to multiple cycles of thermal disinfection for structural integrity using scanning electron microscopy and for protective functions using standards of the United States National Institute for Occupational Safety and Health for particle filtration efficiency, breathing resistance and respirator fit. RESULTS:A single heat treatment rendered SARS-CoV-2 undetectable in all mask samples. Compared with untreated inoculated control masks, E. coli cultures at 24 hours were virtually undetectable from masks treated at 70°C and 50% relative humidity (optical density at 600 nm wavelength, 0.02 ± 0.02 v. 2.77 ± 0.09, p < 0.001), but contamination persisted for masks treated at lower relative humidity. After 10 disinfection cycles, masks maintained fibre diameters similar to untreated masks and continued to meet standards for fit, filtration efficiency and breathing resistance. INTERPRETATION:Thermal disinfection successfully decontaminated N95 respirators without impairing structural integrity or function. This process could be used in hospitals and long-term care facilities with commonly available equipment to mitigate the depletion of N95 masks.Early release, published at www.cmaj.ca on July 30, 2020. Subject to revision.
During the Covid-19 pandemic, pristine and reprocessed N95 respirators are crucial equipment towards limiting nosocomial infections. The NIOSH test certifying the N95 rating, however, poorly simulates aerosols in healthcare settings, limiting our understanding of the exposure risk for healthcare workers wearing these masks, especially reprocessed ones. We used experimental conditions that simulated the sizes, densities and airflow properties of infectious aerosols in healthcare settings. We analyzed the penetration and leakage of aerosols through pristine and reprocessed N95 respirators. Seven reprocessing methods were investigated. Our findings suggest that pristine and properly reprocessed N95 respirators effectively limit exposure to infectious aerosols, but that care must be taken to avoid the elucidated degradation mechanisms and limit noncompliant wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.