When applying deep learning methods in an industrial vision application, they often fall short of the performance shown in a clean and controlled lab environment due to data quality issues. Few would consider the actual labels as a driving factor, yet inaccurate label data can impair model performance significantly. However, being able to mitigate inaccurate or incomplete labels might also be a cost-saver for real-world projects.Here, we survey state-of-the-art deep learning approaches to resolve such missing labels, noisy labels, and partially labeled data in the prospect of an industrial vision application. We systematically present un-, weakly, and semi-supervised approaches from 'A' like anomaly detection to 'Z' like zero-shot classification to resolve these challenges by embracing them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.