Understanding the structures of political debates (which actors make what claims) is essential for understanding democratic political decision-making. The vision of computational construction of such discourse networks from newspaper reports brings together political science and natural language processing. This paper presents three contributions towards this goal: (a) a requirements analysis, linking the task to knowledge base population; (b) a first release of an annotated corpus of claims on the topic of migration, based on German newspaper reports; (c) initial modeling results.
This paper describes the MARDY corpus annotation environment developed for a collaboration between political science and computational linguistics. The tool realizes the complete workflow necessary for annotating a large newspaper text collection with rich information about claims (demands) raised by politicians and other actors, including claim and actor spans, relations, and polarities. In addition to the annotation GUI, the tool supports the identification of relevant documents, text pre-processing, user management, integration of external knowledge bases, annotation comparison and merging, statistical analysis, and the incorporation of machine learning models as "pseudo-annotators".
This article investigates the integration of machine learning in the political claim annotation workflow with the goal to partially automate the annotation and analysis of large text corpora. It introduces the MARDY annotation environment and presents results from an experiment in which the annotation quality of annotators with and without machine learning based annotation support is compared. The design and setting aim to measure and evaluate: a) annotation speed; b) annotation quality; and c) applicability to the use case of discourse network generation. While the results indicate only slight increases in terms of annotation speed, the authors find a moderate boost in annotation quality. Additionally, with the help of manual annotation of the actors and filtering out of the false positives, the machine learning based annotation suggestions allow the authors to fully recover the core network of the discourse as extracted from the articles annotated during the experiment. This is due to the redundancy which is naturally present in the annotated texts. Thus, assuming a research focus not on the complete network but the network core, an AI-based annotation can provide reliable information about discourse networks with much less human intervention than compared to the traditional manual approach.
The analysis of public debates crucially requires the classification of political demands according to hierarchical claim ontologies (e.g. for immigration, a supercategory "Controlling Migration" might have subcategories "Asylum limit" or "Border installations"). A major challenge for automatic claim classification is the large number and low frequency of such subclasses. We address it by jointly predicting pairs of matching super-and subcategories. We operationalize this idea by (a) encoding soft constraints in the claim classifier and (b) imposing hard constraints via Integer Linear Programming. Our experiments with different claim classifiers on a German immigration newspaper corpus show consistent performance increases for joint prediction, in particular for infrequent categories and discuss the complementarity of the two approaches.
Many tasks in text-based computational social science (CSS) involve the classification of political statements into categories based on a domain-specific codebook. In order to be useful for CSS analysis, these categories must be fine-grained. The typically skewed distribution of fine-grained categories, however, results in a challenging classification problem on the NLP side. This paper proposes to make use of the hierarchical relations among categories typically present in such codebooks: e.g., markets and taxation are both subcategories of economy, while borders is a subcategory of security. We use these ontological relations as prior knowledge to establish additional constraints on the learned model, thus improving performance overall and in particular for infrequent categories. We evaluate several lightweight variants of this intuition by extending state-of-the-art transformer-based text classifiers on two datasets and multiple languages. We find the most consistent improvement for an approach based on regularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.