Aims To determine the characteristics of the late Na current (INaL) and its arrhythmogenic potential in the progression of pressure-induced heart disease. Methods and Results Transverse aortic constriction (TAC) was used to induce pressure overload in mice. After one week the hearts developed isolated hypertrophy with preserved systolic contractility. In patch-clamp experiments both, INaL and the action potential duration (APD90) were unchanged. In contrast, after five weeks animals developed heart failure with prolonged APDs and the slowed INaL decay time which could be normalized by addition of the INaL inhibitor ranolazine (Ran) or by the Ca/calmodulin-dependent protein kinase II (CaMKII) inhibitor AIP. Accordingly the APD90 could be significantly abbreviated by Ran, tetrodotoxin and the CaMKII inhibitor AIP. Isoproterenol increased the number of delayed afterdepolarizations (DAD) in myocytes from failing but not sham hearts. Application of either Ran or AIP prevented the occurrence of DADs. Moreover, the incidence of triggered activity was significantly increased in TAC myocytes and was largely prevented by Ran and AIP. Western blot analyses indicate that increased CaMKII activity and a hyperphosphorylation of the Nav1.5 at the CaMKII phosphorylation site (Ser571) paralleled our functional observations five weeks after TAC surgery. Conclusion In pressure overload-induced heart failure a CaMKII-dependent augmentation of INaL plays a crucial role in the AP prolongation and generation of cellular arrhythmogenic triggers, which cannot yet be found in early and still compensated hypertrophy. Inhibition of INaL and CaMKII exert potent antiarrhythmic effects and might therefore be of potential therapeutic interest.
Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) δC mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late INa) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late INa inhibitor ranolazine (Ran, 5 μmol/L). Force–frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm2; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm2 (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late INa was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδC overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late INa. Inhibition of elevated late INa had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδC TG mice. Thus, late INa inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased.
We provide first evidence of differential regulation of NaV1.8 and NaV1.5 in the failing human myocardium and their contribution to arrhythmogenesis due to generation of INaL. We propose inhibition of NaV1.8 thus constitutes a promising novel approach for selective anti-arrhythmic therapy in HF.
AimsEnhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca2+-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca2+-leak in atrial cardiomyocytes (CMs).Methods and resultsIn murine atrial CMs, SR-Ca2+-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca2+/calmodulin-dependent protein kinase II (Autocamide-2-related inhibitory peptide), protein kinase A (H89), or late INa (Ranolazine or Tetrodotoxin) all prevented ATX-II-dependent SR-Ca2+-leak. The SR-Ca2+-leak induction by ATX-II was not detected when either the Na+/Ca2+ exchanger was inhibited (KBR) or in CaMKIIδc-knockout mice. FRET measurements revealed increased cAMP levels upon ATX-II stimulation, which could be prevented by inhibition of adenylyl cyclases (ACs) 5 and 6 (NKY 80) but not by inhibition of phosphodiesterases (IBMX), suggesting PKA activation via an AC-dependent increase of cAMP levels. Western blots showed late INa-dependent hyperphosphorylation of CaMKII as well as PKA target sites at ryanodine receptor type-2 (-S2814 and -S2808) and phospholamban (-Thr17, -S16). Enhancement of late INa did not alter Ca2+-transient amplitude or SR-Ca2+-load. However, upon late INa activation and simultaneous CaMKII inhibition, Ca2+-transient amplitude and SR-Ca2+-load were increased, whereas PKA inhibition reduced Ca2+-transient amplitude and load and additionally slowed Ca2+ elimination. In atrial CMs from patients with atrial fibrillation, inhibition of late INa, CaMKII, or PKA reduced the SR-Ca2+-leak.ConclusionLate INa exerts distinct effects on Ca2+ homeostasis in atrial myocardium through activation of CaMKII and PKA. Inhibition of late INa represents a potential approach to attenuate CaMKII activation and decreases SR-Ca2+-leak in atrial rhythm disorders. The interconnection with the cAMP/PKA system further increases the antiarrhythmic potential of late INa inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.