With its outstanding performance characteristics, the SOFC represents a promising technology for integration into the current energy supply system. For cell development and optimization, a reliable quantitative description of the transport mechanisms and the resulting losses are relevant. The local transport processes are calculated by a 1D model based on the non-equilibrium thermodynamics (NET). The focus of this study is the mass transport in the gas diffusion layers (GDL), which was described as simplified by Fick’s law in a previously developed model. This is first replaced by the Dusty-Gas model (DGM) and then by the thermal diffusion (Soret effect) approach. The validation of the model was performed by measuring U,j-characteristics resulting in a maximum deviation of experimental to simulated cell voltage to up to 0.93%. It is shown that, under the prevailing temperature, gradients the Soret effect can be neglected, but the extension to the DGM has to be considered. The temperature and heat flow curves illustrate the relevance of the Peltier effects. At T=1123.15 K and j=8000 A/m2, 64.44% of the total losses occur in the electrolyte. The exergetic efficiency for this operating point is 0.42. Since lower entropy production rates can be assumed in the GDL, the primary need is to investigate alternative electrolyte materials.
In this manuscript, off-set strip fin structures are presented which are adapted to the possibilities of additive manufacturing. For this purpose, the geometric parameters, including fin height, fin spacing, fin length, and fin longitudinal displacement, are varied, and the Colburn j-factor and the Fanning friction factor are numerically calculated in the Reynolds number range of 80–920. The structures are classified with respect to their entropy production number according to Bejan. This method is compared with the results from partial differential equations for the calculation of the irreversible entropy production rate due to shear stresses and heat conduction. This study reveals that the chosen temperature difference leads to deviation in terms of entropy production due to heat conduction, whereas the dissipation by shear stresses shows only small deviations of less than 2%. It is further shown that the variation in fin height and fin spacing has only a small influence on heat transfer and pressure drop, while a variation in fin length and fin longitudinal displacement shows a larger influence. With respect to the entropy production number, short and long fins, as well as large fin spacing and fin longitudinal displacement, are shown to be beneficial. A detailed examination of a single structure shows that the entropy production rate due to heat conduction is dominated by the entropy production rate in the wall, while the fluid has only a minor influence.
Eco‐friendly mixtures may substitute pure working fluids in thermodynamic cycle processes, yet the existing calculation approaches of mixture condensation are complex due to iterative procedures and multiple input data. To simplify condenser design, this project aims for a new calculation method of mixtures. On this behalf, experimental data for the condensation of ethanol/water and ethanol/octamethyltrisiloxane is provided within a wide composition range to identify the most influential parameters. Finally, a practical prediction method for heat transfer coefficients of mixtures is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.