Distributed or multi-area optimal power flow (OPF) in alternating current (AC) grids is currently a subject undergoing intense study to cope with computational burdens in large-scale grids and to maintain self-control of a regional system operator. However, future power grids will most likely be hybrid grids consisting of the conventional AC transmission system combined with high voltage direct current (DC) technology. Thus, we reformulate the full AC-DC OPF problem such that it becomes separable and, therefore, accessible to distributed algorithms. Then, we show in detail two different approaches on the decomposition of a hybrid AC-DC grid. Finally, we implement an improved alternating direction of multipliers method (ADMM) as well as the most recently proposed augmented Lagrangian based alternating direction inexact Newton (ALADIN) method. Simulation results show that optimality gaps below 0.01% are reached with both decomposition approaches and algorithms for two different test systems (5-bus and 66-bus). Furthermore, convergence rates and wall clock times are reduced by around one order of magnitude from ADMM to ALADIN.Index Terms-Distributed optimal power flow, multi-area optimal power flow, AC-DC grid, ADMM, ALADIN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.