The performance of LoRa geolocation for outdoor tracking purposes has been investigated on a public LoRaWAN network. Time Difference of Arrival (TDoA) localization accuracy, update probability, and update frequency were evaluated for different trajectories (walking, cycling, and driving) and LoRa spreading factors. A median accuracy of 200 m was obtained for the raw TDoA output data. In 90% of the cases, the error was less than 480 m. Taking into account the road map and movement speed significantly improves accuracy to a median of 75 m and a 90th percentile error of less than 180 m.
This paper experimentally compares the positioning accuracy of TDoA-based and RSS-based localization in a public outdoor LoRa network in the Netherlands. The performance of different Received Signal Strength (RSS)-based approaches (proximity, centroid, map matching,...) is compared with Time-Difference-of-Arrival (TDoA) performance. The number of RSS and TDoA location updates and the positioning accuracy per spreading factor (SF) is assessed, allowing to select the optimal SF choice for the network. A road mapping filter is applied to the raw location estimates for the best algorithms and SFs. RSS-based approaches have median and maximal errors that are limited to 1000 m and 2000 m respectively, using a road mapping filter. Using the same filter, TDoA-based approaches deliver median and maximal errors in the order of 150 m and 350 m respectively. However, the number of location updates per time unit using SF7 is around 10 times higher for RSS algorithms than for the TDoA algorithm.
We develop and benchmark four RSS localisation algorithms where different a priori knowledge is required. The selection of the best algorithm depends on the availability of additional information on path loss exponent and/or transmit power. We compare our algorithms with centroid localization and show that the algorithms provide better results for shadowing on the values not exceeding 6dB. We perform experiments and simulations with Bluetooth Low Energy and LoRaWAN technologies and select the best technology and algorithm for localisation in large open industrial environments.
Internet of Things (IoT) applications that value long battery lifetime over accurate location-based services benefit from localization via Low Power Wide Area Networks (LPWANs) such as LoRaWAN. Recent work on Angle Of Arrival (AoA) estimation with LoRa enables us to explore new optimizations that decrease the estimation error and increase the reliability of Time Difference Of Arrival (TDoA) methods. In this paper, particle filtering is applied to combine TDoA and AoA measurements that were collected in a dense urban environment. The performance of this particle filter is compared to a TDoA estimator and our previous grid-based combination. The results show that a median estimation error of 199 m can be obtained with a particle filter without AoA, which is an error reduction of 10 % compared to the grid-based method. Moreover, the median error is reduced with 57 % if AoA measurements are used. Hence, more accurate and reliable localization is achieved compared to the performance of other baseline methods.
In contrast to accurate GPS-based localization, approaches to localize within LoRaWAN networks offer the advantages of being low power and low cost. This targets a very different set of use cases and applications on the market where accuracy is not the main considered metric. The localization is performed by the Time Difference of Arrival (TDoA) method and provides discrete position estimates on a map. An accurate “tracking-on-demand” mode for retrieving lost and stolen assets is important. To enable this mode, we propose deploying an e-compass in the mobile LoRa node, which frequently communicates directional information via the payload of the LoRaWAN uplink messages. Fusing this additional information with raw TDoA estimates in a map matching algorithm enables us to estimate the node location with a much increased accuracy. It is shown that this sensor fusion technique outperforms raw TDoA at the cost of only embedding a low-cost e-compass. For driving, cycling, and walking trajectories, we obtained minimal improvements of 65, 76, and 82% on the median errors which were reduced from 206 to 68 m, 197 to 47 m, and 175 to 31 m, respectively. The energy impact of adding an e-compass is limited: energy consumption increases by only 10% compared to traditional LoRa localization, resulting in a solution that is still 14 times more energy-efficient than a GPS-over-LoRa solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.