We present the first quantitative measurements of the torque exerted on a single gold nanorod in a polarized three-dimensional optical trap. We determined the torque both by observing the time-averaged orientation distribution and by measuring the dynamics of the rotational brownian fluctuations. The measurements are in good agreement with calculations, where the temperature profile around the hot nanorod gives rise to a reduced, effective viscosity. The maximum torque on a 60 nm×25 nm nanorod was 100 pN·nm, large enough to address single-molecule processes in soft and biological matter.
We form sub-micrometer-sized vapor bubbles around a single laser-heated gold nanoparticle in a liquid and monitor them through optical scattering of a probe laser. Bubble formation is explosive even under continuous-wave heating. The fast, inertia-governed expansion is followed by a slower contraction and disappearance after some tens of nanoseconds. In a narrow range of illumination powers, bubble time traces show a clear echo signature. We attribute it to sound waves released upon the initial explosion and reflected by flat interfaces, hundreds of microns away from the particle. Echoes can trigger new explosions. A nanobubble's steady state (with a vapor shell surrounding the heated nanoparticle) can be reached by a proper time profile of the heating intensity. Stable nanobubbles could have original applications for light modulation and for enhanced optical-acoustic coupling in photoacoustic microscopy.
Triplet states can be interesting for optical switching of molecular fluorescence as well as quantum experiments relying on the manipulation of spin states. However, the ground state of molecules is usually a singlet state. It is therefore interesting to study the intersystem crossing (ISC) rates between singlet and triplet states. We have measured the autocorrelation function of the fluorescence from single perylene molecules in an ortho-dichlorobenzene host matrix at cryogenic temperatures (1.3 K). We observed two time scales in the autocorrelation function corresponding to intersystem crossing to two indistinguishable triplet states (TX and TY) and a third triplet state (TZ). By studying the power dependence of the correlation times and contrasts in the autocorrelation functions of single molecules, we determine the ISC rates of perylene for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.