Recent concerns about the reproducibility of science have led to several calls for more open and transparent research practices and for the monitoring of potential improvements over time. However, with tens of thousands of new biomedical articles published per week, manually mapping and monitoring changes in transparency is unrealistic. We present an open-source, automated approach to identify 5 indicators of transparency (data sharing, code sharing, conflicts of interest disclosures, funding disclosures, and protocol registration) and apply it across the entire open access biomedical literature of 2.75 million articles on PubMed Central (PMC). Our results indicate remarkable improvements in some (e.g., conflict of interest [COI] disclosures and funding disclosures), but not other (e.g., protocol registration and code sharing) areas of transparency over time, and map transparency across fields of science, countries, journals, and publishers. This work has enabled the creation of a large, integrated, and openly available database to expedite further efforts to monitor, understand, and promote transparency and reproducibility in science.
Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.
Background: Never before have clinical trials drawn as much public attention as those testing interventions for COVID-19. We aimed to describe the worldwide COVID-19 clinical research response and its evolution over the first 100 days of the pandemic. Methods: Descriptive analysis of planned, ongoing or completed trials by April 9, 2020 testing any intervention to treat or prevent COVID-19, systematically identified in trial registries, preprint servers, and literature databases. A survey was conducted of all trials to assess their recruitment status up to July 6, 2020. Results: Most of the 689 trials (overall target sample size 396,366) were small (median sample size 120; interquartile range [IQR] 60-300) but randomized (75.8%; n=522) and were often conducted in China (51.1%; n=352) or the USA (11%; n=76). 525 trials (76.2%) planned to include 155,571 hospitalized patients, and 25 (3.6%) planned to include 96,821 health-care workers. Treatments were evaluated in 607 trials (88.1%), frequently antivirals (n=144) or antimalarials (n=112); 78 trials (11.3%) focused on prevention, including 14 vaccine trials. No trial investigated social distancing. Interventions tested in 11 trials with >5,000 participants were also tested in 169 smaller trials (median sample size 273; IQR 90-700). Hydroxychloroquine alone was investigated in 110 trials. While 414 trials (60.0%) expected completion in 2020, only 35 trials (4.1%; 3,071 participants) were completed by July 6. Of 112 trials with detailed recruitment information, 55 had recruited <20% of the targeted sample; 27 between 20-50%; and 30 over 50% (median 14.8% [IQR 2.0-62.0%]). Conclusions: The size and speed of the COVID-19 clinical trials agenda is unprecedented. However, most trials were small investigating a small fraction of treatment options. The feasibility of this research agenda is questionable, and many trials may end in futility, wasting research resources. Much better coordination is needed to respond to global health threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.