Trypanocide resistance remains a huge challenge in the management of animal African trypanosomiasis. Paucity of data on the prevalence of multi-drug resistant trypanosomes has greatly hindered optimal veterinary management practices. We use mathematical model predictions to highlight appropriate drug regimens that impede trypanocide resistance development in cattle. We demonstrate that using drugs in decreasing resistance order results in a negligible increase in number of cattle with resistant infection, in contrast to a more pronounced increase from trypanocide use in increasing resistance order. We demonstrate that the lowest levels of trypanocide resistance are achieved with combination therapy. We also show that increasing the number of cattle treated leads to a progressive reduction in the number of cattle with drug resistant infections for treatments of up to 80% of the cattle population for the combination treatment strategy. Our findings provide an initial evidence-based framework on some essential practices that promote optimal use of the handful of trypanocides. We anticipate that our modest forecasts will improve therapeutic outcomes by appropriately informing on the best choice, and combination of drugs that minimize treatment failure rates.
Campylobacter spp. is one of the most widespread infectious diseases of veterinary and public health significance. Globally, the incidence of campylobacteriosis has increased over the last decade in both developing and developed countries. Squamates (lizards, snakes and amphisbaenians) are a potential reservoir and source of transmission of campylobacteriosis to humans. This systematic review examined studies from the last 20 years that have reported squamate-associated human campylobacteriosis. It was found that C. fetus subsp. testudinum and C. fetus subsp. fetus were the most common species responsible for human campylobacteriosis from a squamate host. The common squamate hosts identified included bearded dragons (Pogona vitticeps), green iguana (Iguana iguana), western beaked gecko (Rhynchoedura ornate) and blotched blue-tongued skink (Tiliqua nigrolutea). People with underlying chronic illnesses, the immunocompromised and the elderly were identified as the most vulnerable population. Exposure to pet squamates, wild animals, consumption of reptilian cuisines and cross contamination with untreated water were risk factors associated with Campylobacter infections. Proper hand hygiene practices, responsible pet ownership, ‘One Health’ education and awareness on zoonotic diseases will help reduce the public health risks arising from Campylobacter exposure through squamates. Continued surveillance using molecular diagnostic methods will also enhance detection and response to squamate-linked campylobacteriosis.
Objective Animal African trypanosomiasis (AAT) is a life-threatening vector-borne disease, caused by trypanosome parasites, which are principally transmitted by tsetse flies. In Kenya, the prevalence of drug-resistant trypanosomes in endemic regions remains poorly understood. The objective of this study was to establish AAT point prevalence, drug susceptibility of associated trypanosomes, and measure infectivity by multiple AAT mammalian hosts to tsetse flies in Shimba hills, a resource-poor region with high bovine trypanosomiasis prevalence and morbidity rates at the coast of Kenya. We collected tsetse flies using traps (1 Ngu and 2 biconical), and then sorted them on sex and species. Trypanosomes present in tsetse flies were detected by first extracting all genomic DNA, and then performing PCR reactions with established primers of the internal transcribed spacer regions. Polymorphisms associated with trypanocide resistance in the TbAT1 gene were also detected by performing PCR reactions with established primers. Results Our findings suggest low trypanosome prevalence (3.7%), low trypanocide resistance, and low infectivity by multiple mammalian hosts to tsetse flies in Shimba hills. We conclude that enhanced surveillance is crucial for informing disease management practices that help prevent the spread of drug-resistant trypanosomiasis.
ObjectiveIn Sub-Saharan Africa, there is an increase in trypanosome non-susceptibility to multiple trypanocides, but limited information on judicious trypanocide use is accessible to smallholder farmers and agricultural stakeholders in disease endemic regions, resulting in widespread multi-drug resistance. Huge economic expenses and the laborious nature of extensive field studies have hindered collection of the requisite large-scale prospective datasets required to inform disease management. We examined the efficacy of community-led data collection strategies using smartphones by smallholder farmers to acquire robust datasets from the trypanosomiasis endemic Shimba hills region in Kenya. We used Open Data Kit, an open-source smartphone application development software, to create a data collection App.ResultsOur study provides proof of concept for the viability of using smartphone Apps to remotely collect reliable large-scale information from smallholder farmers and veterinary health care givers in resource poor settings. We show that these datasets can be reliably collated remotely, analysed, and the findings can inform policies that improve farming practices and economic wellbeing while restricting widespread multi-drug resistance. Moreover, this strategy can be used to monitor and manage other infectious diseases in other rural, resource poor settings.Electronic supplementary materialThe online version of this article (10.1186/s13104-019-4198-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.