The ability of S. aureus to infect bone and osteoblasts is correlated to its incredible virulence armamentarium that can mediate the invasion/internalization process, cytotoxicity, membrane damage and intracellular persistence. We comparatively analyzed the interaction, persistence and modulation of expression of selected genes as well as cell viability in an ex-vivo model using human MG-63 osteoblasts of two previously studied and well-characterized S. aureus clinical strains belonging to ST239-SCCmecIII-t037 and ST228-SCCmecI-t041 clones at 3h and 24h post-infection (p.i). ATCC12598 was used as a control strain. Using Imaging Flow Cytometry analysis, we found that strains differently invaded osteoblasts after 3h and 24h: ATCC12598 internalized in 70% and 50% of cells, ST239-SCCmecIII in 50% and 45% and ST228-SCCmecI in 30% and 20%, respectively. ST239-III, during the infection period, exerted a significative cytotoxic activity due to the over-expression of hla and psmA and the increased expression of the genes involved in adhesion, probably due to the release and re-entry of bacteria inside MG-63 at 24h p.i. The lower invasiveness of ST228-I was also correlated with the non-cytotoxic activity inside osteoblasts. This clone was not able to activate a sufficient cellular reaction and succumbed in-side the MG-63 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.