Background and Purpose
The precise mechanism/s of action of ethanol, although studied for many years, are not well understood. Like other drugs of abuse, ethanol affects dopamine levels in the nucleus accumbens (nAc), an important region of the mesolimbic system, causing a reinforcing effect. It has been shown that glycine receptors (GlyRs) present in the nAc are potentiated by clinically relevant concentrations of ethanol, where α1 and α2 are the predominant subunits expressed.
Experimental Approach
Using a combination of electrophysiology and behavioural assays, we studied the involvement of GlyR α2 subunits on the effects of low and high doses of ethanol, as well as on consumption using mice lacking the GlyR α2 subunit (male Glra2−/Y and female Glra2−/−).
Key Results
GlyR α2 subunits exist in accumbal neurons, since the glycine‐evoked currents and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) in Glra2−/Y mice were drastically decreased. In behavioural studies, differences in ethanol consumption and sedation were observed between wild‐type (WT) and Glra2 knockout (KO) mice. Using the drinking in the dark (DID) paradigm, we found that Glra2−/Y mice presented a binge‐like drinking behaviour immediately when exposed to ethanol rather than the gradual consumption seen in WT animals. Interestingly, the effect of knocking out Glra2 in female (Glra2−/−) mice was less evident, since WT female mice already showed higher DID.
Conclusion and Implications
The differences in ethanol consumption between WT and KO mice provide additional evidence supporting the conclusion that GlyRs are biologically relevant targets for the sedative and rewarding properties of ethanol.
Agmatine (1-amino-4-guanidinobutane), a precursor for polyamine biosynthesis, has been identified as an important neuromodulator with anticonvulsant, antineurotoxic and antidepressant actions in the brain. In this context it has emerged as an important mediator of addiction/satiety pathways associated with alcohol misuse. Consequently, the regulation of the activity of key enzymes in agmatine metabolism is an attractive strategy to combat alcoholism and related addiction disorders. Agmatine results from the decarboxylation of L-arginine in a reaction catalyzed by arginine decarboxylase (ADC), and can be converted to either guanidine butyraldehyde by diamine oxidase (DAO) or putrescine and urea by the enzyme agmatinase (AGM) or the more recently identified AGM-like protein (ALP). In rat brain, agmatine, AGM and ALP are predominantly localised in areas associated with roles in appetitive and craving (drug-reinstatement) behaviors. Thus, inhibitors of AGM or ALP are promising agents for the treatment of addictions. In this review, the properties of DAO, AGM and ALP are discussed with a view to their role in the agmatine metabolism in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.